• Adames, Á. F., and J. M. Wallace, 2017: On the tropical atmospheric signature of El Niño. J. Atmos. Sci., 74, 19231939, https://doi.org/10.1175/JAS-D-16-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, C., A. E. Bourassa, C. A. McLinden, C. E. Sioris, T. von Clarmann, B. Funke, L. A. Rieger, and D. A. Degenstein, 2017: Effect of volcanic aerosol on stratospheric NO2 and N2O5 from 2002–2014 as measured by Odin-OSIRIS and Envisat-MIPAS. Atmos. Chem. Phys., 17, 80638080, https://doi.org/10.5194/acp-17-8063-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., and Coauthors, 2017: Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis. Proc. Natl. Acad. Sci. USA, 114, E4905E4913, https://doi.org/10.1073/pnas.1619318114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Froidevaux, L., D. E. Kinnison, R. Wang, J. Anderson, and R. A. Fuller, 2019: Evaluation of CESM1 (WACCM) free-running and specified dynamics atmospheric composition simulations using global multispecies satellite data records. Atmos. Chem. Phys., 19, 47834821, https://doi.org/10.5194/acp-19-4783-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, https://doi.org/10.1002/qj.49712454911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Höpfner, M., and Coauthors, 2019: Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci., 12, 608612, https://doi.org/10.1038/s41561-019-0385-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kremser, S., and Coauthors, 2016: Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys., 54, 278335, https://doi.org/10.1002/2015RG000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L. M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Climate, 26, 73727391, https://doi.org/10.1175/JCLI-D-12-00558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, M. J., and Coauthors, 2016: Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1 (WACCM). J. Geophys. Res. Atmos., 121, 23322348, https://doi.org/10.1002/2015JD024290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, M. J., and Coauthors, 2017: Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1 (WACCM). J. Geophys. Res. Atmos., 122, 13 06113 078, https://doi.org/10.1002/2017JD027006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naik, V., L. W. Horowitz, M. Daniel Schwarzkopf, and M. Lin, 2017: Impact of volcanic aerosols on stratospheric ozone recovery. J. Geophys. Res. Atmos., 122, 95159528, https://doi.org/10.1002/2016JD025808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neely, R., and A. Schmidt, 2016: VolcanEESM: Global volcanic sulphur dioxide (SO2) emissions database from 1850 to present, version 1.0. Centre for Environmental Data Analysis, accessed 30 December 2015, https://doi.org/10.5285/76ebdc0b-0eed-4f70-b89e-55e606bcd568.

    • Crossref
    • Export Citation
  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38, 27892796, https://doi.org/10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robrecht, S., and Coauthors, 2019: Mechanism of ozone loss under enhanced water vapour conditions in the mid-latitude lower stratosphere in summer. Atmos. Chem. Phys., 19, 58055833, https://doi.org/10.5194/acp-19-5805-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Q., J. T. Jayne, C. E. Kolb, D. R. Worsnop, and P. Davidovits, 2001: Kinetic model for reaction of ClONO2 with H2O and HCl and HOCl with HCl in sulfuric acid solutions. J. Geophys. Res., 106, 24 25924 274, https://doi.org/10.1029/2000JD000181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37, 275316, https://doi.org/10.1029/1999RG900008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, 1986: On the depletion of Antarctic ozone. Nature, 321, 755758, https://doi.org/10.1038/321755a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely, J. P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, https://doi.org/10.1126/science.1206027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2016: Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere. Geophys. Res. Lett., 43, 12 62412 633, https://doi.org/10.1002/2016GL071778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vernier, J. P., and Coauthors, 2011: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilka, C., K. Shah, K. Stone, S. Solomon, D. Kinnison, M. Mills, A. Schmidt, and R. R. Neely, 2018: On the role of heterogeneous chemistry in ozone depletion and recovery. Geophys. Res. Lett., 45, 78357842, https://doi.org/10.1029/2018GL078596.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 119 119 42
Full Text Views 44 44 18
PDF Downloads 68 68 24

Atmospheric Chemistry Signatures of an Equatorially Symmetric Matsuno–Gill Circulation Pattern

View More View Less
  • 1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
  • 2 Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Matsuno–Gill circulations have been widely studied in tropical meteorology, but their impact on stratospheric chemistry has seldom been explicitly evaluated. This study demonstrates that, in a model nudged to reanalysis, anticyclonic Rossby wave gyres that form near the tropopause as a result of equatorially symmetric heating in the troposphere provide a dynamical mechanism to influence tropical and subtropical atmospheric chemistry during near-equinox months. The anticyclonic flow entrains extratropical air from higher latitudes into the deep tropics of both hemispheres and induces cooling in the already cold upper-troposphere/lower-stratosphere (UTLS) region. Both of these aspects of the circulation allow heterogeneous chlorine activation on sulfuric acid aerosols to proceed rapidly, primarily via the HCl + ClONO2 reaction. Precipitation rates and heating rates from reanalysis are shown to be consistent with these heating and circulation response patterns in the months of interest. This study analyzes specified dynamics simulations from the Whole Atmosphere Community Climate Model (SD-WACCM) with and without tropical heterogeneous chemistry to demonstrate that these circulations influence substantially the distributions of, for example, NO2 and ClO in the UTLS tropics and subtropics of both hemispheres. This provides a previously unrecognized dynamical influence on the spatial structures of atmospheric composition changes in the UTLS during near-equinox months.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0025.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine Wilka, cwilka@mit.edu

Abstract

Matsuno–Gill circulations have been widely studied in tropical meteorology, but their impact on stratospheric chemistry has seldom been explicitly evaluated. This study demonstrates that, in a model nudged to reanalysis, anticyclonic Rossby wave gyres that form near the tropopause as a result of equatorially symmetric heating in the troposphere provide a dynamical mechanism to influence tropical and subtropical atmospheric chemistry during near-equinox months. The anticyclonic flow entrains extratropical air from higher latitudes into the deep tropics of both hemispheres and induces cooling in the already cold upper-troposphere/lower-stratosphere (UTLS) region. Both of these aspects of the circulation allow heterogeneous chlorine activation on sulfuric acid aerosols to proceed rapidly, primarily via the HCl + ClONO2 reaction. Precipitation rates and heating rates from reanalysis are shown to be consistent with these heating and circulation response patterns in the months of interest. This study analyzes specified dynamics simulations from the Whole Atmosphere Community Climate Model (SD-WACCM) with and without tropical heterogeneous chemistry to demonstrate that these circulations influence substantially the distributions of, for example, NO2 and ClO in the UTLS tropics and subtropics of both hemispheres. This provides a previously unrecognized dynamical influence on the spatial structures of atmospheric composition changes in the UTLS during near-equinox months.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0025.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine Wilka, cwilka@mit.edu
Save