A Shallow Water Model for Convective Self-Aggregation

View More View Less
  • 1 University of California, Davis; Lawrence Berkeley National Laboratory
© Get Permissions
Restricted access

Abstract

Randomly distributed convective storms can self-aggregate in the absence of large-scale forcings. Here we present a 1D shallow water model to study the convective self-aggregation. This model simulates the dynamics of the planetary boundary layer and represents convection as a triggered process. Once triggered, convection lasts for finite time and occupies finite length. We show that the model can successfully simulate self-aggregation, and that the results are robust to a wide range of parameter values. In the simulations, convection excites gravity waves. The gravity waves then form a standing wave pattern, separating the domain into convectively active and inactive regions. We analyze the available potential energy (APE) budget and show that convection generates APE, providing energy for self-aggregation. By performing dimensional analysis, we develop a scaling theory for the size of convective aggregation, which is set by the gravity wave speed, damping timescale, and number density of convective storms. This paper provides a simple modeling framework to further study convective self-aggregation.

Corresponding author address: 253 Hoagland Hall, University of California, Davis, California, USA. E-mail: dayang@ucdavis.edu

Abstract

Randomly distributed convective storms can self-aggregate in the absence of large-scale forcings. Here we present a 1D shallow water model to study the convective self-aggregation. This model simulates the dynamics of the planetary boundary layer and represents convection as a triggered process. Once triggered, convection lasts for finite time and occupies finite length. We show that the model can successfully simulate self-aggregation, and that the results are robust to a wide range of parameter values. In the simulations, convection excites gravity waves. The gravity waves then form a standing wave pattern, separating the domain into convectively active and inactive regions. We analyze the available potential energy (APE) budget and show that convection generates APE, providing energy for self-aggregation. By performing dimensional analysis, we develop a scaling theory for the size of convective aggregation, which is set by the gravity wave speed, damping timescale, and number density of convective storms. This paper provides a simple modeling framework to further study convective self-aggregation.

Corresponding author address: 253 Hoagland Hall, University of California, Davis, California, USA. E-mail: dayang@ucdavis.edu
Save