• Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, https://doi.org/10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964986, https://doi.org/10.1175/MWR-D-12-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W., 1983: A numerical study of the interactions between two tropical cyclones. Mon. Wea. Rev., 111, 18061817, https://doi.org/10.1175/1520-0493(1983)111<1806:ANSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. Y. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. C. L. Chan, 1984: Comments on “A numerical study of the interactions between two tropical cyclones.” Mon. Wea. Rev., 112, 16431645, https://doi.org/10.1175/1520-0493(1984)112<1643:CONSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, K. Q., and C. J. Neumann, 1983: On the relative motion of binary tropical cyclones. Mon. Wea. Rev., 111, 945953, https://doi.org/10.1175/1520-0493(1983)111<0945:OTRMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and D. W. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4, 17371744, https://doi.org/10.1063/1.858394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkovich, A. I., A. P. Khain, and I. Ginis, 1995: Motion and evolution of binary tropical cyclones in a coupled atmosphere–ocean numerical model. Mon. Wea. Rev., 123, 13451363, https://doi.org/10.1175/1520-0493(1995)123<1345:MAEOBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, H., Y. Wang, M. Riemer, and Q. Li, 2019: Effect of unidirectional vertical wind shear on tropical cyclone intensity change—Lower-layer shear versus upper-layer shear. J. Geophys. Res. Atmos., 124, 62656282, https://doi.org/10.1029/2019JD030586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75104, https://doi.org/10.1002/qj.49704920602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan, 13, 106110.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511530, https://doi.org/10.1175/JAS-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2016: Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J. Atmos. Sci., 73, 11591177, https://doi.org/10.1175/JAS-D-15-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and G. S. Dietachmayer, 1993: On the interaction of tropical-cyclone-scale vortices. III. Continuous barotropic vortices. Quart. J. Roy. Meteor. Soc., 119, 13811398, https://doi.org/10.1002/qj.49711951408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, W., and H. Y. Chun, 2013: The effects of topography on the evolution of Typhoon Saomai (2006) under the influence of Tropical Storm Bopha (2006). Mon. Wea. Rev., 141, 468489, https://doi.org/10.1175/MWR-D-11-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, W., and H. Y. Chun, 2015a: Characteristics of binary tropical cyclones observed in the western North Pacific for 62 years (1951–2012). Mon. Wea. Rev., 143, 17491761, https://doi.org/10.1175/MWR-D-14-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, W., and H. Y. Chun, 2015b: Effects of thermodynamic profiles on the interaction of binary tropical cyclones. J. Geophys. Res. Atmos., 120, 91739192, https://doi.org/10.1002/2015JD023409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarrell, J., S. Brand, and D. S. Nicklin, 1978: An analysis of western North Pacific tropical cyclone forecast errors. Mon. Wea. Rev., 106, 925937, https://doi.org/10.1175/1520-0493(1978)106<0925:AAOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., I. Ginis, A. Falkovich, and M. Frumin, 2000: Interaction of binary tropical cyclones in a coupled tropical cyclone-ocean model. J. Geophys. Res., 105, 22 33722 354, https://doi.org/10.1029/2000JD900268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., G. T.-J. Chen, and C.-H. Lin, 2000: Merger of Tropical Cyclones Zeb and Alex. Mon. Wea. Rev., 128, 29672975, https://doi.org/10.1175/1520-0493(2000)128<2967:MOTCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, https://doi.org/10.1002/qj.49711951406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-Y., and Z.-M. Tan, 2016: A dynamical initialization scheme for binary tropical cyclones. Mon. Wea. Rev., 144, 47874803, https://doi.org/10.1175/MWR-D-16-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prieto, R., B. D. McNoldy, S. R. Fulton, and W. H. Schubert, 2003: A classification of binary tropical cyclone–like vortex interactions. Mon. Wea. Rev., 131, 26562666, https://doi.org/10.1175/1520-0493(2003)131<2656:ACOBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., Y. Xie, B. Yin, M. Wang, and G. Li, 2020: Establishment of an objective standard for the definition of binary tropical cyclones in the western North Pacific. Adv. Atmos. Sci., 37, 12111221, https://doi.org/10.1007/s00376-020-9287-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. II: Discrete vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631379, https://doi.org/10.1002/qj.49711951407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-E., J.-Y. Han, and J.-J. Baik, 2006: On the critical separation distance of binary vortices in a nondivergent barotropic atmosphere. J. Meteor. Soc. Japan, 84, 853869, https://doi.org/10.2151/jmsj.84.853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Preprints, Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1–D4-10.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, https://doi.org/10.1007/s00703-006-0246-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65, 15051527, https://doi.org/10.1175/2007JAS2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Zhu, 1989a: A numerical simulational study on Fujiwhara effect of binary cyclone (in Chinese). J. Acad. Meteor. Sci., 4, 1420.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Zhu, 1989b: Interactions of binary vortices in a nondivergent barotropic model (in Chinese). J. Trop. Meteor., 5, 105115, https://doi.org/10.16032/j.issn.1004-4965.1989.02.002.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1995: On the interaction of tropical-cyclone-scale vortices. IV: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 121, 95126, https://doi.org/10.1002/qj.49712152106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, https://doi.org/10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 1992: The efficiency of symmetric vortex merger. Phys. Fluids, 4, 17451758, https://doi.org/10.1063/1.858395.

  • Wu, C.-C., T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 12891300, https://doi.org/10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., J.-F. Fei, X.-G. Huang, X.-P. Cheng, and J.-Q. Ren, 2011: Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J. Trop. Meteor., 17, 335344, https://doi.org/10.3969/J.SSN.1006-8775.2011.04.003.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and Y. Wang, 2013: On the initial development of asymmetric vertical motion and horizontal relative flow in a mature tropical cyclone embedded in environmental vertical shear. J. Atmos. Sci., 70, 34713491, https://doi.org/10.1175/JAS-D-12-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., C.-C. Wu, K.-H. Chou, and C.-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 45934611, https://doi.org/10.1175/2008MWR2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks Jr., 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 159 159 90
Full Text Views 68 68 35
PDF Downloads 88 88 52

Intensity Change of Binary Tropical Cyclones (TCs) in Idealized Numerical Simulations: Two Initially Identical Mature TCs

View More View Less
  • 1 Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
  • 2 College of Oceanography, Hohai University, Nanjing, China
  • 3 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
  • 4 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 5 Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 6 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions
Restricted access

Abstract

This study investigates the intensity change of binary tropical cyclones (TCs) in idealized cloud-resolving simulations. Four simulations of binary interaction between two initially identical mature TCs of about 70 m s−1 with initial separation distance varying from 480 to 840 km are conducted in a quiescent f-plane environment. Results show that two identical TCs finally merge if their initial separation distance is within 600 km. The binary TCs presents two weakening stages (stages 1 and 3) with a quasi-steady evolution (stage 2) in between. Such intensity change of one TC is correlated with the upper-layer vertical wind shear (VWS) associated with the upper-level anticyclone (ULA) of the other TC. The potential temperature budget shows that eddy radial advection of potential temperature induced by large upper-layer VWS contributes to the weakening of the upper-level warm core and thereby the weakening of binary TCs in stage 1. In stage 2, the upper-layer VWS first weakens and then restrengthens with relatively weak magnitude, leading to a quasi-steady intensity evolution. In stage 3, due to the increasing upper-layer VWS, the nonmerging binary TCs weaken again until their separation distance exceeds the local Rossby radius of deformation of the ULA (about 1600 km), which can serve as a dynamical critical distance within which direct interaction can occur between two TCs. In the merging cases, the binary TCs weaken prior to merging because highly asymmetric structure develops as a result of strong horizontal deformation of the inner core. However, the merged system intensifies shortly after merging.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Yuqing Wang, yuqing@hawaii.edu

Abstract

This study investigates the intensity change of binary tropical cyclones (TCs) in idealized cloud-resolving simulations. Four simulations of binary interaction between two initially identical mature TCs of about 70 m s−1 with initial separation distance varying from 480 to 840 km are conducted in a quiescent f-plane environment. Results show that two identical TCs finally merge if their initial separation distance is within 600 km. The binary TCs presents two weakening stages (stages 1 and 3) with a quasi-steady evolution (stage 2) in between. Such intensity change of one TC is correlated with the upper-layer vertical wind shear (VWS) associated with the upper-level anticyclone (ULA) of the other TC. The potential temperature budget shows that eddy radial advection of potential temperature induced by large upper-layer VWS contributes to the weakening of the upper-level warm core and thereby the weakening of binary TCs in stage 1. In stage 2, the upper-layer VWS first weakens and then restrengthens with relatively weak magnitude, leading to a quasi-steady intensity evolution. In stage 3, due to the increasing upper-layer VWS, the nonmerging binary TCs weaken again until their separation distance exceeds the local Rossby radius of deformation of the ULA (about 1600 km), which can serve as a dynamical critical distance within which direct interaction can occur between two TCs. In the merging cases, the binary TCs weaken prior to merging because highly asymmetric structure develops as a result of strong horizontal deformation of the inner core. However, the merged system intensifies shortly after merging.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Yuqing Wang, yuqing@hawaii.edu
Save