• Acton, C. H., 1996: Ancillary data services of NASA’s Navigation and Ancillary Information Facility. Planet. Space Sci., 44, 6570, https://doi.org/10.1016/0032-0633(95)00107-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Acton, C. H., N. Bachman, B. Semenov, and E. Wright, 2018: A look toward the future in the handling of space science mission geometry. Planet. Space Sci., 150, 912, https://doi.org/10.1016/j.pss.2017.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., J. E. Solbrig, T. F. Lee, and S. D. Miller, 2011: Automated lightning flash detection in nighttime visible satellite data. Wea. Forecasting, 26, 399408, https://doi.org/10.1175/WAF-D-10-05002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., and Y. Bai, 2014: Quantitative analysis of VIIRS DNB nightlight point source for light power estimation and stability monitoring. Remote Sens., 6, 11 91511 935, https://doi.org/10.3390/rs61211915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., F. J. D. Luccia, X. Xiong, R. Wolfe, and F. Weng, 2014: Early on-orbit performance of the visible infrared imaging radiometer suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens., 52, 11421156, https://doi.org/10.1109/TGRS.2013.2247768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., Y. Bai, W. Wang, and T. Choi, 2019: Radiometric inter-consistency of VIIRS DNB on Suomi NPP and NOAA-20 from observations of reflected lunar lights over deep convective clouds. Remote Sens., 11, 934, https://doi.org/10.3390/rs11080934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di, D., J. Li, W. Han, W. Bai, C. Wu, and W. P. Menzel, 2018: Enhancing the fast radiative transfer model for Fengyun-4 GIIRS by using local training profiles. J. Geophys. Res. Atmos., 123, 12 58312 596, https://doi.org/10.1029/2018JD029089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, C. D., K. E. Baugh, E. A. Kihn, H. W. Kroehl, and E. R. Davis, 1997: Mapping of city lights using DMSP operational linescan system. Photogramm. Eng. Remote Sens., 63, 727734.

    • Search Google Scholar
    • Export Citation
  • Elvidge, C. D., and et al. , 2007: The Nightsat mission concept. Int. J. Remote Sens., 28, 26452670, https://doi.org/10.1080/01431160600981525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and G. L. Stephens, 1991: A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 46, 413423, https://doi.org/10.1016/0022-4073(91)90043-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. S., J. Zhang, E. J. Hyer, S. D. Miller, and J. S. Reid, 2013: Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS day/night band. Atmos. Meas. Tech., 6, 12451255, https://doi.org/10.5194/amt-6-1245-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieffer, H., and T. Stone, 2005: The spectral irradiance of the moon. Astron. J., 129, 28872901, https://doi.org/10.1086/430185.

  • Levin, N., and et al. , 2020: Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ., 237, 111443, https://doi.org/10.1016/j.rse.2019.111443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., C. Elvidge, Y. Zhou, C. Cao, and T. Warner, 2017: Remote sensing of night-time light. Int. J. Remote Sens., 38, 58555859, https://doi.org/10.1080/01431161.2017.1351784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., R. Ma, Q. Zhang, D. Li, S. Liu, T. He, and L. Zhao, 2019: Anisotropic characteristic of artificial light at night—Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ., 233, 111357, https://doi.org/10.1016/j.rse.2019.111357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, C. K., S. Mills, B. I. Hauss, and S. D. Miller, 2014: Improved VIIRS Day/night band imagery with near-constant contrast. IEEE Trans. Geosci. Remote Sens., 52, 69646971, https://doi.org/10.1109/TGRS.2014.2306132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. Elsevier Science, 583 pp.

  • Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys., 14, 13 71913 737, https://doi.org/10.5194/acp-14-13719-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., P. Yang, S. L. Nasiri, S. Platnick, K. G. Meyer, C. Wang, and S. Ding, 2015: A fast visible infrared imaging radiometer suite simulator for cloudy atmospheres. J. Geophys. Res. Atmos., 120, 240255, https://doi.org/10.1002/2014JD022443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and R. E. Turner, 2009: A dynamic lunar spectral irradiance data set for NPOESS/VIIRS day/night band nighttime environmental applications. IEEE Trans. Geosci. Remote Sens., 47, 23162329, https://doi.org/10.1109/TGRS.2009.2012696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., S. H. D. Haddock, C. D. Elvidge, and T. F. Lee, 2005: Detection of a bioluminescent milky sea from space. Proc. Natl. Acad. Sci. USA, 102, 14 18114 184, https://doi.org/10.1073/pnas.0507253102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., S. P. Mills, C. D. Elvidge, D. T. Lindsey, T. F. Lee, and J. D. Hawkins, 2012: Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA, 109, 15 70615 711, https://doi.org/10.1073/pnas.1207034109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and et al. , 2013: Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens., 5, 67176766, https://doi.org/10.3390/rs5126717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and et al. , 2018: The dark side of Hurricane Matthew: Unique perspectives from the VIIRS day/night band. Bull. Amer. Meteor. Soc., 99, 25612574, https://doi.org/10.1175/BAMS-D-17-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, M., and et al. , 2016: On-orbit spatial quality evaluation and image restoration of Fengyun-3C/MERSI. IEEE Trans. Geosci. Remote Sens., 54, 68476858, https://doi.org/10.1109/TGRS.2016.2569038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, M., and et al. , 2017a: An investigation of the implications of lunar illumination spectral changes for day/night band based cloud property retrieval due to lunar phase transition. J. Geophys. Res. Atmos., 122, 92339244, https://doi.org/10.1002/2017JD027117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, M., and et al. , 2017b: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteor. Res., 31, 708719, https://doi.org/10.1007/s13351-017-6161-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, M., J. Li, F. Wang, Z. Liu, and W. P. Menzel, 2020a: Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ., 239, 111616, https://doi.org/10.1016/j.rse.2019.111616.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, M., and et al. , 2020b: A low-light radiative transfer model for satellite observations of moon light and Earth surface light at night. J. Quant. Spectrosc. Radiat. Transfer, 247, 106954, https://doi.org/10.1016/j.jqsrt.2020.106954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and et al. , 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solbrig, J. E., S. D. Miller, J. Zhang, L. Grasso, and A. Kliewer, 2020: Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters. Atmos. Meas. Tech., 13, 165190, https://doi.org/10.5194/amt-13-165-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 25022509, https://doi.org/10.1364/AO.27.002502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., X. Xiong, W. Barnes, and B. Guether, 2007: MODIS solar reflective bands on-orbit lunar calibration. IEEE Trans. Geosci. Remote Sens., 45, 23832393, https://doi.org/10.1109/TGRS.2007.896541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walther, A., A. K. Heidinger, and S. Miller, 2013: The expected performance of cloud optical and microphysical properties derived from Suomi NPP VIIRS day/night band lunar reflectance. J. Geophys. Res. Atmos., 118, 13 23013 240, https://doi.org/10.1002/2013JD020478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., C. Aegerter, X. Xu, and J. J. Szykman, 2016: Potential application of VIIRS day/night band for monitoring nighttime surface PM2.5 air quality from space. Atmos. Environ., 124, 5563, https://doi.org/10.1016/j.atmosenv.2015.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., and et al. , 2020: Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS. Remote Sens. Environ., 241, 111727, https://doi.org/10.1016/j.rse.2020.111727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., X. Guo, D. Li, and B. Jiang, 2019: Evaluating the potential of LJ1-01 nighttime light data for modeling socio-economic parameters. Sensors, 19, 1465, https://doi.org/10.3390/s19061465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., S. L. Jaker, J. S. Reid, S. D. Miller, J. Solbrig, and T. D. Toth, 2019: Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite day/night band. Atmos. Meas. Tech., 12, 32093222, https://doi.org/10.5194/amt-12-3209-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Zhang, X. Hu, L. Chen, and M. Min, 2017: A novel hyperspectral lunar irradiance model based on ROLO and mean equigonal albedo. Optik, 142, 657664, https://doi.org/10.1016/j.ijleo.2017.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Zhang, X. Hu, L. Chen, M. Min, N. Xu, and R. Wu, 2019: Radiometric cross-calibration for multiple sensors with the moon as an intermediate reference. J. Meteor. Res., 33, 925933, https://doi.org/10.1007/s13351-019-9008-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., and et al. , 2019: The latest progress of Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci., 36, 10271045, https://doi.org/10.1007/s00376-019-8215-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 18 18 18
Full Text Views 4 4 4
PDF Downloads 3 3 3

Can the Earth–Moon Distance Influence the Accuracy of Lunar Irradiance with the Plane-Parallel Assumption in Atmospheric Radiative Transfer at Night?

View More View Less
  • 1 a School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, China
  • | 2 b Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Guangzhou, China
  • | 3 c Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • | 4 d Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • | 5 e Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration, Beijing, China
  • | 6 f Beijing Institute of Applied Meteorology, Beijing, China
© Get Permissions
Restricted access

Abstract

The plane-parallel atmosphere as an underlying assumption in physics is appropriately used in the rigorous numerical simulation of the atmospheric radiative transfer model (RTM) with incident solar light. The solar irradiance is a constant with the plane-parallel assumption, which is attributed to the small difference in the distance between any point on Earth’s surface to the sun. However, at night, atmospheric RTMs use the moon as a unique incident light source in the sky. The Earth–moon distance is approximately 1/400 of the Earth–sun distance. Thus, the varying Earth–moon distance on Earth’s surface can influence the top of atmosphere (TOA) lunar irradiance for the plane-parallel atmosphere assumption. In this investigation, we observe that the maximum biases in Earth–moon distance and day/night band lunar irradiance at the TOA are ±1.7% and ±3.3%, respectively, with the plane-parallel assumption. According to our calculations, this bias effect on the Earth–moon distance and lunar irradiance shows a noticeable spatiotemporal variation on a global scale that can impact the computational accuracy of an RTM at night. In addition, we also developed a fast and portable correction algorithm for the Earth–moon distance within a maximum bias of 18 km or ±0.05%, because of the relatively low computational efficiency and the large storage space necessary for the standard ephemeris computational software. This novel correction algorithm can be easily used or integrated into the atmospheric RTM at night.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lu Zhang, zhanglu_nsmc@cma.gov.cn

Abstract

The plane-parallel atmosphere as an underlying assumption in physics is appropriately used in the rigorous numerical simulation of the atmospheric radiative transfer model (RTM) with incident solar light. The solar irradiance is a constant with the plane-parallel assumption, which is attributed to the small difference in the distance between any point on Earth’s surface to the sun. However, at night, atmospheric RTMs use the moon as a unique incident light source in the sky. The Earth–moon distance is approximately 1/400 of the Earth–sun distance. Thus, the varying Earth–moon distance on Earth’s surface can influence the top of atmosphere (TOA) lunar irradiance for the plane-parallel atmosphere assumption. In this investigation, we observe that the maximum biases in Earth–moon distance and day/night band lunar irradiance at the TOA are ±1.7% and ±3.3%, respectively, with the plane-parallel assumption. According to our calculations, this bias effect on the Earth–moon distance and lunar irradiance shows a noticeable spatiotemporal variation on a global scale that can impact the computational accuracy of an RTM at night. In addition, we also developed a fast and portable correction algorithm for the Earth–moon distance within a maximum bias of 18 km or ±0.05%, because of the relatively low computational efficiency and the large storage space necessary for the standard ephemeris computational software. This novel correction algorithm can be easily used or integrated into the atmospheric RTM at night.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lu Zhang, zhanglu_nsmc@cma.gov.cn

Supplementary Materials

    • Supplemental Materials (ZIP 124.86 MB)
Save