Convection-Kelvin wave coupling in a global convection-permitting model

View More View Less
  • 1 University of Washington, Department of Atmospheric Sciences
© Get Permissions
Restricted access

Abstract

A convectively coupled equatorial Kelvin wave (CCKW) was observed over the equatorial Indian Ocean in early November 2011 during the DYNAMO field campaign. This study examines the structure of the CCKW event using two simulations made using the MPAS model: one with 3-km grid spacing without convective parameterization and another with a 15-km grid and parameterized convection.

Both simulations qualitatively capture the observed structure of the CCKW, including its vertical tilt and progression of cloud/precipitation structures. The two simulations, however, differ substantially in the amplitude of the CCKW-associated precipitation. While the 3-km run realistically captures the observed modulation of precipitation by the CCKW, the 15-km simulation severely underestimates its magnitude. To understand the difference between the two MPAS simulations regarding wave-convection coupling within the CCKW, the relationship of precipitation with convective inhibition, saturation fraction, and surface turbulent fluxes is investigated. Results show that the 15-km simulation underestimates the magnitude of the CCKW precipitation peak in association with its unrealistically linear relationship between moisture and precipitation. Precipitation, both in observations and the 3-km run, is predominantly controlled by saturation fraction and this relationship is exponential. In contrast, the parameterized convection in the 15-km run is overly sensitive to convective inhibition and not sensitive enough to environmental moisture. The implications of these results on CCKW theories are discussed.

Corresponding author address: Nicholas J. Weber, Department of Atmospheric Sciences, University of Washington, Box 351640 Seattle, WA, 98195-1640. E-mail: njweber2@atmos.washington.edu

Abstract

A convectively coupled equatorial Kelvin wave (CCKW) was observed over the equatorial Indian Ocean in early November 2011 during the DYNAMO field campaign. This study examines the structure of the CCKW event using two simulations made using the MPAS model: one with 3-km grid spacing without convective parameterization and another with a 15-km grid and parameterized convection.

Both simulations qualitatively capture the observed structure of the CCKW, including its vertical tilt and progression of cloud/precipitation structures. The two simulations, however, differ substantially in the amplitude of the CCKW-associated precipitation. While the 3-km run realistically captures the observed modulation of precipitation by the CCKW, the 15-km simulation severely underestimates its magnitude. To understand the difference between the two MPAS simulations regarding wave-convection coupling within the CCKW, the relationship of precipitation with convective inhibition, saturation fraction, and surface turbulent fluxes is investigated. Results show that the 15-km simulation underestimates the magnitude of the CCKW precipitation peak in association with its unrealistically linear relationship between moisture and precipitation. Precipitation, both in observations and the 3-km run, is predominantly controlled by saturation fraction and this relationship is exponential. In contrast, the parameterized convection in the 15-km run is overly sensitive to convective inhibition and not sensitive enough to environmental moisture. The implications of these results on CCKW theories are discussed.

Corresponding author address: Nicholas J. Weber, Department of Atmospheric Sciences, University of Washington, Box 351640 Seattle, WA, 98195-1640. E-mail: njweber2@atmos.washington.edu
Save