Effects of Roll Vortices on the Evolution of Hurricane Harvey During Landfall

View More View Less
  • 1 Department of Atmospheric Sciences, University of Utah, Salt Lake City, USA
  • 2 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Horizontal boundary layer roll vortices are a series of large-scale turbulent eddies that prevail in a hurricane’s boundary layer. In this paper, a one-way nested sub-kilometer-scale large eddy simulation (LES) based on the Weather Research and Forecasting model (WRF) was used to examine the impact of roll vortices on the evolution of Hurricane Harvey around its landfall from 0000z on 25 to 1800z 27 August 2017. The simulation results imply that the turbulence in the LES can be attributed mainly to roll vortices. With the representation of roll vortices, the LES simulation provided a better simulation of hurricane wind vertical structure and precipitation. In contrast, the mesoscale simulation with the YSU PBL scheme overestimated the precipitation for the hurricane over the ocean.

Further analysis indicates that the roll vortices introduced a positive vertical flux and thinner inflow layer, whereas a negative flux maintained the maximum tangential wind at around 400 m above ground. During hurricane landfall, the weak negative flux maintained the higher wind in the LES simulation. The overestimated low-level vertical flux in the mesoscale simulation with the YSU scheme led to overestimated hurricane intensity over the ocean and accelerated the decay of the hurricane during landfall. Rainfall analysis reveals that the roll vortices led to a weak updraft and insufficient water vapor supply in the LES. For the simulation with the YSU scheme, the strong updraft combined with surplus water vapor eventually led to unrealistic heavy rainfall for the hurricane over the ocean.

Corresponding Author: Prof. Zhaoxia Pu, Department of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112, USA. Email: Zhaoxiao.Pu@utah.edu

Abstract

Horizontal boundary layer roll vortices are a series of large-scale turbulent eddies that prevail in a hurricane’s boundary layer. In this paper, a one-way nested sub-kilometer-scale large eddy simulation (LES) based on the Weather Research and Forecasting model (WRF) was used to examine the impact of roll vortices on the evolution of Hurricane Harvey around its landfall from 0000z on 25 to 1800z 27 August 2017. The simulation results imply that the turbulence in the LES can be attributed mainly to roll vortices. With the representation of roll vortices, the LES simulation provided a better simulation of hurricane wind vertical structure and precipitation. In contrast, the mesoscale simulation with the YSU PBL scheme overestimated the precipitation for the hurricane over the ocean.

Further analysis indicates that the roll vortices introduced a positive vertical flux and thinner inflow layer, whereas a negative flux maintained the maximum tangential wind at around 400 m above ground. During hurricane landfall, the weak negative flux maintained the higher wind in the LES simulation. The overestimated low-level vertical flux in the mesoscale simulation with the YSU scheme led to overestimated hurricane intensity over the ocean and accelerated the decay of the hurricane during landfall. Rainfall analysis reveals that the roll vortices led to a weak updraft and insufficient water vapor supply in the LES. For the simulation with the YSU scheme, the strong updraft combined with surplus water vapor eventually led to unrealistic heavy rainfall for the hurricane over the ocean.

Corresponding Author: Prof. Zhaoxia Pu, Department of Atmospheric Sciences, University of Utah, 135 S 1460 E, Rm. 819, Salt Lake City, UT 84112, USA. Email: Zhaoxiao.Pu@utah.edu
Save