The power distribution between symmetric and anti-symmetric components of the tropical wavenumber-frequency spectrum

View More View Less
  • 1 Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

A yet unexplained feature of the tropical wavenumber-frequency spectrum is its parity distributions, i.e., the distribution of power between the meridionally symmetric and anti-symmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and anti-symmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber-frequency spectrum is biased towards its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land-sea contrast. On the other hand, we find that a small-scale (stochastic) forcing has the capacity to affect the parity distribution at large spatial scales via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any bias in the small-scale forcing, symmetric or anti-symmetric, leads to symmetric bias in the large-scale spectrum regardless of the source of variability responsible for the onset of the asymmetry. As this process is also associated with the generation of large-scale features in the Tropics by small-scale convection, the present study demonstrates that the physical process associated with deep-convection leads to a symmetric bias in the tropical spectrum.

Corresponding author address: Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904 Israel. E-mail: nathan.paldor@mail.huji.ac.il

Abstract

A yet unexplained feature of the tropical wavenumber-frequency spectrum is its parity distributions, i.e., the distribution of power between the meridionally symmetric and anti-symmetric components of the spectrum. Due to the linearity of the decomposition to symmetric and anti-symmetric components and the Fourier analysis, the total spectral power equals the sum of the power contained in each of these two components. However, the spectral power need not be evenly distributed between the two components. Satellite observations and reanalysis data provide ample evidence that the parity distribution of the tropical wavenumber-frequency spectrum is biased towards its symmetric component. Using an intermediate-complexity model of an idealized moist atmosphere, we find that the parity distribution of the tropical spectrum is nearly insensitive to large-scale forcing, including topography, ocean heat fluxes, and land-sea contrast. On the other hand, we find that a small-scale (stochastic) forcing has the capacity to affect the parity distribution at large spatial scales via an upscale (inverse) turbulent energy cascade. These results are qualitatively explained by considering the effects of triad interactions on the parity distribution. According to the proposed mechanism, any bias in the small-scale forcing, symmetric or anti-symmetric, leads to symmetric bias in the large-scale spectrum regardless of the source of variability responsible for the onset of the asymmetry. As this process is also associated with the generation of large-scale features in the Tropics by small-scale convection, the present study demonstrates that the physical process associated with deep-convection leads to a symmetric bias in the tropical spectrum.

Corresponding author address: Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904 Israel. E-mail: nathan.paldor@mail.huji.ac.il
Save