Monsoonal MCS Initiation, Rainfall, and Diurnal Gravity Waves over the Bay of Bengal: Observation and a Linear Model

Chin-Hsuan Peng Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania, USA

Search for other papers by Chin-Hsuan Peng in
Current site
Google Scholar
PubMed
Close
and
Xingchao Chen Department of Meteorology and Atmospheric Science, and Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania, USA

Search for other papers by Xingchao Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous observational studies have indicated that mesoscale convective systems (MCSs) contribute the majority of precipitation over the Bay of Bengal (BoB) during the summer monsoon season, yet their initiation and propagation remain incompletely understood. To fill this knowledge gap, we conducted a comprehensive study using a combination of 20-year satellite observations, MCS tracking, reanalysis data, and a theoretical linear model. Satellite observations reveal clear diurnal propagation signals of MCS initiation frequency and rainfall from the west coast of the BoB toward the central BoB, with the MCS rainfall propagating slightly slower than the MCS initiation frequency. Global reanalysis data indicates a strong association between the offshore-propagating MCS initiation frequency/rainfall and diurnal low-level wind perturbations, implying the potential role of gravity waves. To verify the hypothesis, we developed a 2-D linear model that can be driven by realistic meteorological fields from reanalysis. The linear model realistically reproduces the characteristics of offshore-propagating diurnal wind perturbations. The wind perturbations, as well as the offshore propagation signals of MCS initiation frequency and rainfall, are associated with diurnal gravity waves emitted from the coastal regions, which in turn are caused by the diurnal land-sea thermal contrast. The ambient wind speed and vertical wind shear play crucial roles in modulating the timing, propagation, and amplitude of diurnal gravity waves. Using the linear model and satellite observations, we further show that the stronger monsoonal flows lead to faster offshore propagation of diurnal gravity waves, which subsequently control the offshore propagation signals of MCS initiation and rainfall.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Xingchao Chen The Pennsylvania State University, University Park Email: xzc55@psu.edu

Abstract

Previous observational studies have indicated that mesoscale convective systems (MCSs) contribute the majority of precipitation over the Bay of Bengal (BoB) during the summer monsoon season, yet their initiation and propagation remain incompletely understood. To fill this knowledge gap, we conducted a comprehensive study using a combination of 20-year satellite observations, MCS tracking, reanalysis data, and a theoretical linear model. Satellite observations reveal clear diurnal propagation signals of MCS initiation frequency and rainfall from the west coast of the BoB toward the central BoB, with the MCS rainfall propagating slightly slower than the MCS initiation frequency. Global reanalysis data indicates a strong association between the offshore-propagating MCS initiation frequency/rainfall and diurnal low-level wind perturbations, implying the potential role of gravity waves. To verify the hypothesis, we developed a 2-D linear model that can be driven by realistic meteorological fields from reanalysis. The linear model realistically reproduces the characteristics of offshore-propagating diurnal wind perturbations. The wind perturbations, as well as the offshore propagation signals of MCS initiation frequency and rainfall, are associated with diurnal gravity waves emitted from the coastal regions, which in turn are caused by the diurnal land-sea thermal contrast. The ambient wind speed and vertical wind shear play crucial roles in modulating the timing, propagation, and amplitude of diurnal gravity waves. Using the linear model and satellite observations, we further show that the stronger monsoonal flows lead to faster offshore propagation of diurnal gravity waves, which subsequently control the offshore propagation signals of MCS initiation and rainfall.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Xingchao Chen The Pennsylvania State University, University Park Email: xzc55@psu.edu
Save