A Transformational Approach to Winter Orographic Weather Modification Research: The SNOWIE Project

Sarah A. Tessendorf NCAR, Boulder, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
Jeffrey R. French University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey R. French in
Current site
Google Scholar
PubMed
Close
,
Katja Friedrich University of Colorado, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Roy M. Rasmussen NCAR, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Lulin Xue NCAR, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Kyoko Ikeda NCAR, Boulder, Colorado

Search for other papers by Kyoko Ikeda in
Current site
Google Scholar
PubMed
Close
,
Derek R. Blestrud Idaho Power Company, Boise, Idaho

Search for other papers by Derek R. Blestrud in
Current site
Google Scholar
PubMed
Close
,
Melvin L. Kunkel Idaho Power Company, Boise, Idaho

Search for other papers by Melvin L. Kunkel in
Current site
Google Scholar
PubMed
Close
,
Shaun Parkinson Idaho Power Company, Boise, Idaho

Search for other papers by Shaun Parkinson in
Current site
Google Scholar
PubMed
Close
,
Jefferson R. Snider University of Wyoming, Laramie, Wyoming

Search for other papers by Jefferson R. Snider in
Current site
Google Scholar
PubMed
Close
,
Joshua Aikins University of Colorado, Boulder, Colorado

Search for other papers by Joshua Aikins in
Current site
Google Scholar
PubMed
Close
,
Spencer Faber University of Wyoming, Laramie, Wyoming

Search for other papers by Spencer Faber in
Current site
Google Scholar
PubMed
Close
,
Adam Majewski University of Wyoming, Laramie, Wyoming

Search for other papers by Adam Majewski in
Current site
Google Scholar
PubMed
Close
,
Coltin Grasmick University of Wyoming, Laramie, Wyoming

Search for other papers by Coltin Grasmick in
Current site
Google Scholar
PubMed
Close
,
Philip T. Bergmaier University of Wyoming, Laramie, Wyoming

Search for other papers by Philip T. Bergmaier in
Current site
Google Scholar
PubMed
Close
,
Andrew Janiszeski University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Andrew Janiszeski in
Current site
Google Scholar
PubMed
Close
,
Adam Springer University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Adam Springer in
Current site
Google Scholar
PubMed
Close
,
Courtney Weeks NCAR, Boulder, Colorado

Search for other papers by Courtney Weeks in
Current site
Google Scholar
PubMed
Close
,
David J. Serke NCAR, Boulder, Colorado

Search for other papers by David J. Serke in
Current site
Google Scholar
PubMed
Close
, and
Roelof Bruintjes NCAR, Boulder, Colorado

Search for other papers by Roelof Bruintjes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) project aims to study the impacts of cloud seeding on winter orographic clouds. The field campaign took place in Idaho between 7 January and 17 March 2017 and employed a comprehensive suite of instrumentation, including ground-based radars and airborne sensors, to collect in situ and remotely sensed data in and around clouds containing supercooled liquid water before and after seeding with silver iodide aerosol particles. The seeding material was released primarily by an aircraft. It was hypothesized that the dispersal of the seeding material from aircraft would produce zigzag lines of silver iodide as it dispersed downwind. In several cases, unambiguous zigzag lines of reflectivity were detected by radar, and in situ measurements within these lines have been examined to determine the microphysical response of the cloud to seeding. The measurements from SNOWIE aim to address long-standing questions about the efficacy of cloud seeding, starting with documenting the physical chain of events following seeding. The data will also be used to evaluate and improve computer modeling parameterizations, including a new cloud-seeding parameterization designed to further evaluate and quantify the impacts of cloud seeding.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Sarah A. Tessendorf, saraht@ucar.edu

Abstract

The Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) project aims to study the impacts of cloud seeding on winter orographic clouds. The field campaign took place in Idaho between 7 January and 17 March 2017 and employed a comprehensive suite of instrumentation, including ground-based radars and airborne sensors, to collect in situ and remotely sensed data in and around clouds containing supercooled liquid water before and after seeding with silver iodide aerosol particles. The seeding material was released primarily by an aircraft. It was hypothesized that the dispersal of the seeding material from aircraft would produce zigzag lines of silver iodide as it dispersed downwind. In several cases, unambiguous zigzag lines of reflectivity were detected by radar, and in situ measurements within these lines have been examined to determine the microphysical response of the cloud to seeding. The measurements from SNOWIE aim to address long-standing questions about the efficacy of cloud seeding, starting with documenting the physical chain of events following seeding. The data will also be used to evaluate and improve computer modeling parameterizations, including a new cloud-seeding parameterization designed to further evaluate and quantify the impacts of cloud seeding.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Sarah A. Tessendorf, saraht@ucar.edu
Save
  • Aikins, J., K. Friedrich, B. Geerts, and B. Pokharel, 2016: Role of a cross-barrier jet and turbulence on winter orographic snowfall. Mon. Wea. Rev., 144, 32773300, https://doi.org/10.1175/MWR-D-16-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boe, B., J. A. Heimbach Jr., T. W. Krauss, L. Xue, X. Chu, and J. T. McPartland, 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part I: Observations with acoustic ice nucleus counters. J. Appl. Meteor. Climatol., 53, 13251341, https://doi.org/10.1175/JAMC-D-13-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borys, R. D., D. H. Lowenthal, and D. L. Mitchell, 2000: The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds. Atmos. Environ., 34, 25932602, https://doi.org/10.1016/S1352-2310(99)00492-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breed, D., R. Rasmussen, C. Weeks, B. Boe, and T. Deshler, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, https://doi.org/10.1175/JAMC-D-13-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and R. Rasmussen, 2014: Radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding effect on orographic clouds and precipitation: Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, https://doi.org/10.1175/JAMC-D-14-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and B. Pokharel, 2017a: A case study of cloud radar observations and large-eddy simulations of a shallow stratiform orographic cloud, and the impact of glaciogenic seeding. J. Appl. Meteor. Climatol., 56, 12851304, https://doi.org/10.1175/JAMC-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and R. Rasmussen, 2017b: Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study. J. Appl. Meteor. Climatol., 56, 6984, https://doi.org/10.1175/JAMC-D-16-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., S. T. Siems, and M. J. Manton, 2011: On the decline of wintertime precipitation in the snowy mountains of southeastern Australia. J. Hydrometeor., 12, 14831497, https://doi.org/10.1175/JHM-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 2932.

    • Crossref
    • Export Citation
  • Dennis, A. S., 1980: Weather Modification by Cloud Seeding. International Geophysics Series, Vol. 24, Academic Press, 267 pp.

  • Deshler, T., and D. W. Reynolds, 1990: The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J. Appl. Meteor., 29, 477488, https://doi.org/10.1175/1520-0450(1990)029<0477:TPOSEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshler, T., D. W. Reynolds, and A. W. Huggins, 1990: Physical response of winter orographic clouds over the Sierra Nevada to airborne seeding using dry ice or silver iodide. J. Appl. Meteor., 29, 288330, https://doi.org/10.1175/1520-0450(1990)029<0288:PROWOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. M., M. L. Lytle, M. L. Kunkel, D. R. Blestrud, N. W. Dawson, S. K. Parkinson, R. Edwards, and S. G. Benner, 2018: Assessment of ground-based and aerial cloud seeding using trace chemistry. Adv. Meteor., 2018, 7293987, https://doi.org/10.1155/2018/7293987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 115, 11681173, https://doi.org/10.1073/pnas.1716995115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, ., E. A. Kalina, J. Aikins, J. Sun, D. Gochis, P. Kucera, K. Ikeda, and M. Steiner, 2016: Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 5372, https://doi.org/10.1175/JHM-D-14-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., and Coauthors, 2003: Critical Issues in Weather Modification Research. National Academies Press, 123 pp.

  • Garstang, M., R. Bruintjes, R. Serafin, H. Orville, B. Boe, W. Cotton, and J. Warburton, 2005: Weather modification: Finding common ground. Bull. Amer. Meteor. Soc., 86, 647655, https://doi.org/10.1175/BAMS-86-5-647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2013: The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif., 45, 2443.

    • Search Google Scholar
    • Export Citation
  • Grant, L. O., and R. E. Elliott, 1974: The cloud seeding temperature window. J. Appl. Meteor., 13, 355363, https://doi.org/10.1175/1520-0450(1974)013<0355:TCSTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., G. Thompson, H. Morrison, A. R. Bansemer, R. M. Rasmussen, P. Minnis, Z. Wang, and D. Zhang, 2011: Formation and spread of aircraft-induced holes in clouds. Science, 333, 7781, https://doi.org/10.1126/science.1202851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., J. H. Lyons, J. D. Locatelli, K. R. Biswas, L. F. Radke, R. R. Weiss Sr., and A. L. Rangno, 1981: Radar detection of cloud-seeding effects. Science, 213, 12501252, https://doi.org/10.1126/science.213.4513.1250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, J., 2012: Urban Sustainability Initiative Rep., 12 pp., http://digitalscholarship.unlv.edu/reports/6.

  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 30163043, https://doi.org/10.1175/JAS3999.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., and B. Geerts, 2015: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part II: Convective clouds. J. Appl. Meteor. Climatol., 54, 20342056, https://doi.org/10.1175/JAMC-D-15-0056.1.

    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, K. Friedrich, and B. Pokharel, 2015: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part I: Mostly stratiform clouds. J. Appl. Meteor. Climatol., 54, 19441969, https://doi.org/10.1175/JAMC-D-14-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, and B. Boe, 2016: The extra-area effect of orographic cloud seeding: Observational evidence of precipitation enhancement downwind of the target mountain. J. Appl. Meteor. Climatol., 55, 14091424, https://doi.org/10.1175/JAMC-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenny, J. F., N. L. Barber, S. S. Hutson, K. S. Linsey, J. K. Lovelace, and M. A. Maupin, 2009: Estimated use of water in the United States in 2005. U.S. Geological Survey Circular 1344, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 1982: Cloud seeding: One success in 35 years. Science, 217, 519521, https://doi.org/10.1126/science.217.4559.519.

  • Langer, G., 1973: Evaluation of NCAR ice nucleus counter. Part I: Basic operation. J. Appl. Meteor., 12, 10001011, https://doi.org/10.1175/1520-0450(1973)012<1000:EONINC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2016: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn ., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löffler-Mang, M., M. Kunz, and W. Schmid, 1999: On the performance of a low-cost K-band Doppler radar for quantitative rain measurements. J. Atmos. Oceanic Technol., 16, 379387, https://doi.org/10.1175/1520-0426(1999)016<0379:OTPOAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and B. Geerts, 2016: A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description. Atmos. Res., 182, 269281, https://doi.org/10.1016/j.atmosres.2016.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, and X. Jing, 2014a: The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: A multisensor case study. J. Appl. Meteor. Climatol., 53, 890909, https://doi.org/10.1175/JAMC-D-13-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, J. Aikins, D. Breed, R. Rasmussen, and A. Huggins, 2014b: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli. Atmos. Res., 147–148, 162182, https://doi.org/10.1016/j.atmosres.2014.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, K. Ikeda, and R. Rasmussen, 2017: A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis. Atmos. Res., 183, 4257, https://doi.org/10.1016/j.atmosres.2016.08.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M. K., and G. Vali, 1983: Observations of liquid water in orographic clouds over Elk Mountain. J. Atmos. Sci., 40, 13001312, https://doi.org/10.1175/1520-0469(1983)040<1300:OOLWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2017: Atmospheric rivers emerge as a global science and applications focus. Bull. Amer. Meteor. Soc., 98, 19691973, https://doi.org/10.1175/BAMS-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1983: Production of ice particles in clouds due to aircraft penetrations. J. Climate Appl. Meteor., 22, 214232, https://doi.org/10.1175/1520-0450(1983)022<0214:POIPIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rangno, A. L., and P. V. Hobbs, 1984: Further observations of the production of ice particles in clouds by aircraft. J. Climate Appl. Meteor., 23, 985987, https://doi.org/10.1175/1520-0450(1984)023<0985:FOOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Coauthors, 2018: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteor. Climatol., 57, 26392660, https://doi.org/10.1175/JAMC-D-17-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., 1992: Microphysical structure and evolution of a central Sierra Nevada orographic cloud system. J. Appl. Meteor., 31, 324, https://doi.org/10.1175/1520-0450(1992)031<0003:MSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and L. O. Grant, 1987: Supercooled liquid water structure of a shallow orographic cloud system in southern Utah. J. Climate Appl. Meteor., 26, 208215, https://doi.org/10.1175/1520-0450(1987)026<0208:SLWSOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., 2015: Literature review and scientific synthesis on the efficacy of winter orographic cloud seeding. U.S. Bureau of Reclamation Tech. Memo., 148 pp., www.usbr.gov/main/qoi/docs/Literature_Review_and_Scientific_Synthesis_of_the_Efficacy_of_Winter_Orographic_Cloud_Seeding_Peer_Review.pdf.

  • Rosenfeld, D., and Coauthors, 2013: The common occurrence of highly supercooled drizzle and rain near the coastal regions of the western United States. J. Geophys. Res. Atmos., 118, 98199833, https://doi.org/10.1002/jgrd.50529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457459, https://doi.org/10.1126/science.104.2707.457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serke, D., and Coauthors, 2014: Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer. Atmos. Res., 149, 7787, https://doi.org/10.1016/j.atmosres.2014.05.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware, 1998: Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci ., 33, 393404, https://doi.org/10.1029/97RS03656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and T. R. Blazek, 2001: Topographic distortion of a cold front over the Snake River Plain and central Idaho mountains. Wea. Forecasting, 16, 301314, https://doi.org/10.1175/1520-0434(2001)016<0301:TDOACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., W. R. Leaitch, and P. S. K. Liu, 1992: Hydrated and dried aerosol-size-distribution measurements from the Particle Measuring Systems FSSP-300 probe and the deiced PCASP-100X probe. J. Atmos. Oceanic Technol., 9, 548555, https://doi.org/10.1175/1520-0426(1992)009<0548:HADASD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Super, A. B., and B. A. Boe, 1988: Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado. J. Appl. Meteor., 27, 11661182, https://doi.org/10.1175/1520-0450(1988)027<1166:MEOWCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Super, A. B., and A. W. Huggins, 1992: Investigations of the targeting of ground-released silver iodide in Utah—Part I: Ground observations of silver-in-snow and ice nuclei. J. Wea. Modif., 24, 1934.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., B. Boe, B. Geerts, M. J. Manton, S. Parkinson, and R. Rasmussen, 2015: The future of winter orographic cloud seeding: A view from scientists and stakeholders. Bull. Amer. Meteor. Soc., 96, 21952198, https://doi.org/10.1175/BAMS-D-15-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, https://doi.org/10.1063/1.1697813.

  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ware, R., R. Carpenter, J. Guldner, J. Liljegren, T. Nehrkorn, F. Solheim, and F. Vandenberghe, 2003: A multichannel radiometric profiler of temperature, humidity, and cloud liquid. Radio Sci., 38, 8079, https://doi.org/10.1029/2002RS002856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodley, W. L., T. J. Henderson, B. Vonnegut, G. Gordon, R. E. Breidenthal, and S. H. Holle, 1991: Aircraft-produced ice particles (APIPs) in supercooled clouds and the probable mechanism for their production. J. Appl. Meteor., 30, 14691489, https://doi.org/10.1175/1520-0450(1991)030<1469:APIPIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013a: Implementation of a silver iodide cloud seeding parameterization in WRF: Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatol., 52, 14331457, https://doi.org/10.1175/JAMC-D-12-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013b: Implementation of a silver iodide cloud seeding parameterization in WRF: Part II: 3D simulations of actual seeding events and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, https://doi.org/10.1175/JAMC-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: WRF large-eddy simulations of chemical tracer deposition and seeding effect over complex terrain from ground- and aircraft-based AgI generators. Atmos. Res., 190, 89103, https://doi.org/10.1016/j.atmosres.2017.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10454 3884 188
PDF Downloads 5671 1660 105