A New Generation of Ground-Based Mobile Platforms for Active and Passive Profiling of the Boundary Layer

Timothy J. Wagner Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Timothy J. Wagner in
Current site
Google Scholar
PubMed
Close
,
Petra M. Klein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Petra M. Klein in
Current site
Google Scholar
PubMed
Close
, and
David D. Turner Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mobile systems equipped with remote sensing instruments capable of simultaneous profiling of temperature, moisture, and wind at high temporal resolutions can offer insights into atmospheric phenomena that the operational network cannot. Two recently developed systems, the Space Science and Engineering Center (SSEC) Portable Atmospheric Research Center (SPARC) and the Collaborative Lower Atmosphere Profiling System (CLAMPS), have already experienced great success in characterizing a variety of phenomena. Each system contains an Atmospheric Emitted Radiance Interferometer for thermodynamic profiling and a Halo Photonics Stream Line Doppler wind lidar for kinematic profiles. These instruments are augmented with various in situ and remote sensing instruments to provide a comprehensive assessment of the evolution of the lower troposphere at high temporal resolution (5 min or better). While SPARC and CLAMPS can be deployed independently, the common instrument configuration means that joint deployments with well-coordinated data collection and analysis routines are easily facilitated.

In the past several years, SPARC and CLAMPS have participated in numerous field campaigns, which range from mesoscale campaigns that require the rapid deployment and teardown of observing systems to multiweek fixed deployments, providing crucial insights into the behavior of many different atmospheric boundary layer processes while training the next generation of atmospheric scientists. As calls for a nationwide ground-based profiling network continue, SPARC and CLAMPS can play an important role as test beds and prototype nodes for such a network.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Dr. Timothy J. Wagner, tim.wagner@ssec.wisc.edu

Abstract

Mobile systems equipped with remote sensing instruments capable of simultaneous profiling of temperature, moisture, and wind at high temporal resolutions can offer insights into atmospheric phenomena that the operational network cannot. Two recently developed systems, the Space Science and Engineering Center (SSEC) Portable Atmospheric Research Center (SPARC) and the Collaborative Lower Atmosphere Profiling System (CLAMPS), have already experienced great success in characterizing a variety of phenomena. Each system contains an Atmospheric Emitted Radiance Interferometer for thermodynamic profiling and a Halo Photonics Stream Line Doppler wind lidar for kinematic profiles. These instruments are augmented with various in situ and remote sensing instruments to provide a comprehensive assessment of the evolution of the lower troposphere at high temporal resolution (5 min or better). While SPARC and CLAMPS can be deployed independently, the common instrument configuration means that joint deployments with well-coordinated data collection and analysis routines are easily facilitated.

In the past several years, SPARC and CLAMPS have participated in numerous field campaigns, which range from mesoscale campaigns that require the rapid deployment and teardown of observing systems to multiweek fixed deployments, providing crucial insights into the behavior of many different atmospheric boundary layer processes while training the next generation of atmospheric scientists. As calls for a nationwide ground-based profiling network continue, SPARC and CLAMPS can play an important role as test beds and prototype nodes for such a network.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Dr. Timothy J. Wagner, tim.wagner@ssec.wisc.edu
Save
  • Askne, J. I. H., and E. R. Westwater, 1986: A review of ground-based remote sensing of temperature and moisture by passive microwave radiometers. IEEE Trans. Geosci. Remote Sens., 24, 340352, https://doi.org/10.1109/TGRS.1986.289591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barratt, P., and I. C. Browne, 1953: A new method of measuring vertical air currents. Quart. J. Roy. Meteor. Soc., 79, 550, https://doi.org/10.1002/qj.49707934218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, L. K., R. K. Newsom, and D. D. Turner, 2017: Year-long vertical velocity statistics derived from Doppler lidar in the continental convective boundary layer. J. Appl. Meteor. Climatol., 56, 24412454, https://doi.org/10.1175/JAMC-D-16-0359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Coauthors, 2005: The Shared Mobile Atmospheric Research and Teaching radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 12631274, https://doi.org/10.1175/BAMS-86-9-1263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., D. D. Turner, U. Löhnert, and S. Castleberry, 2015: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions. J. Appl. Meteor. Climatol., 54, 23052319, https://doi.org/10.1175/JAMC-D-15-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supine, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017a: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., T. J. Wagner, D. D. Turner, and J. Correia Jr., 2017b: Quantifying the accuracy and uncertainty of diurnal thermodynamic profiles and convection indices derived from the Atmospheric Emitted Radiance Interferometer. J. Appl. Meteor. Climatol., 56, 27472766, https://doi.org/10.1175/JAMC-D-17-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., W. G. Blumberg, P. M. Klein, and P. B. Chilson, 2015: Thermodynamic and turbulence characteristics of the Southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor ., 157, 401420, https://doi.org/10.1007/s10546-015-0072-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity sounding for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, https://doi.org/10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clements, C. B., and A. J. Oliphant, 2014: The California State University Mobile Atmospheric Profiling System. Bull. Amer. Meteor. Soc., 95, 17131724, https://doi.org/10.1175/BAMS-D-13-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., W. O. J. Brown, and V. Grubišić, 2005: The Mobile Integrated Sounding System (MISS): Description and lessons from the Sierra Rotors Project. 13th Symp. on Meteorological Observation and Instrumentation, Savannah, GA, Amer. Meteor. Soc., 7.2, https://ams.confex.com/ams/15AppClimate/techprogram/paper_94055.htm.

  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dye, T. S., P. T. Roberts, and M. E. Korc, 1995: Observations of transport processes for ozone and ozone precursors during the 1991 Lake Michigan Ozone Study. J. Appl. Meteor., 34, 18771889, https://doi.org/10.1175/1520-0450(1995)034<1877:OOTPFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, Ed., Springer-Verlag, 143–163.

    • Crossref
    • Export Citation
  • Feldman, D. R., W. D. Collins, P. J. Gero, M. S. Torn, E. J. Mlawer, and T. R. Shippert, 2015: Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature, 519, 339343, https://doi.org/10.1038/nature14240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., and J. R. Mecikalski, 2002: Monitoring high-temporal-resolution convective stability indices using the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma–Kansas tornado outbreak. Wea. Forecasting, 17, 445455, https://doi.org/10.1175/1520-0434(2002)017<0445:MHTRCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardesty, R., and Coauthors, 2012: Thermodynamic Profiling Technologies Workshop report to the National Science Foundation and the National Weather Service. NCAR Tech. Note NCAR/TN-488+STR, 80 pp., https://doi.org/10.5065/D6SQ8XCF.

    • Crossref
    • Export Citation
  • Hartung, D. C., J. A. Otkin, R. A. Petersen, D. D. Turner, and W. F. Feltz, 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part II: Forecast assessment. Mon. Wea. Rev., 139, 23272346, https://doi.org/10.1175/2011MWR3623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewison, T. J., 2007: 1D-VAR retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens., 45, 21632168, https://doi.org/10.1109/TGRS.2007.898091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karan, H., and K. R. Knupp, 2006: Mobile Integrated Profiler System (MIPS) observations of low-level convergent boundaries during IHOP. Mon. Wea. Rev., 134, 92112, https://doi.org/10.1175/MWR3058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kataoka, F., and Coauthors, 2014: TIR spectral radiance calibration of the GOSAT satellite borne TANSO-FTS with the aircraft-based S-HIS and the ground-based S-AERI at the Railroad Valley Desert Playa. IEEE Trans. Geosci. Remote Sens., 52, 89105, https://doi.org/10.1109/TGRS.2012.2236561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, https://doi.org/10.1175/JTECH-1662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, https://doi.org/10.1175/JTECH-1663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Küchler, N., D. D. Turner, U. Löhnert, and S. Crewell, 2016: Calibrating ground-based microwave radiometers: Uncertainty and drifts. Radio Sci ., 51, 311327, https://doi.org/10.1002/2015RS005826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J.-M., L.-X. Guo, L.-K. Lin, Y.-Y. Zhao, and X.-H. Cheng, 2014: A new method of tipping calibration for ground-based microwave radiometer in cloudy atmosphere. IEEE Trans. Geosci. Remote Sens., 52, 55065513, https://doi.org/10.1109/TGRS.2013.2290013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., and O. Maier, 2012: Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5, 11211134, https://doi.org/10.5194/amt-5-1121-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Crewell, O. Krasnov, E. O’Connor, and H. Russchenberg, 2008: Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods. J. Atmos. Oceanic Technol., 25, 12511266, https://doi.org/10.1175/2007JTECHA961.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, https://doi.org/10.1175/2008JAMC2060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young, 1998: Cirrus layer microphysical properties derived from surface- based millimeter radar and infrared interferometer data. J. Geophys. Res., 103, 23 20723 216, https://doi.org/10.1029/98JD02117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., K. Nitschke, T. P. Ackerman, W. R. Ferrell, N. Hickmon, and M. Ivey, 2016: The ARM mobile facilities. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0051.1.

    • Crossref
    • Export Citation
  • National Research Council, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 250 pp.

  • Newman, J. F., P. M. Klein, T. A. Bonin, S. Wharton, A. Sathe, P. B. Chilson, and A. Muschinski, 2016: Evaluation of three lidar scanning strategies for turbulence measurements. Atmos. Meas. Tech., 9, 1993–2013, https://doi.org/10.5194/amt-9-1993-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., D. C. Hartung, D. D. Turner, R. A. Petersen, W. F. Feltz, and E. Janzon, 2011: Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Wea. Rev., 139, 23092326, https://doi.org/10.1175/2011MWR3622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paine, S. N., D. D. Turner, and N. Küchler, 2014: Understanding thermal drift in liquid nitrogen loads used for radiometric calibration in the field. J. Atmos. Oceanic Technol., 31, 647655, https://doi.org/10.1175/JTECH-D-13-00171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, https://doi.org/10.1175/2008JTECHA1128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. P. Davies-Jones, C. E. Doswell III, F. Carr, M. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. Series on Atmospheric, Oceanic, and Planetary Physics, Vol. 2, World Scientific, 238 pp.

    • Crossref
    • Export Citation
  • Rose, T., S. Crewell, U. Löhnert, and C. Simmer, 2005: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos. Res., 75, 183200, https://doi.org/10.1016/j.atmosres.2004.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shipley, S. T., D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, 1983: A High Spectral Resolution Lidar to measure optical scattering properties of atmospheric aerosols. Part I: Instrumentation and theory. Appl. Opt., 22, 37163724, https://doi.org/10.1364/AO.22.003716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, and R. Ware, 1998: Radiometric profiling of temperature, water vapor, and cloud liquid water using various inversion methods. Radio Sci ., 33, 393404, https://doi.org/10.1029/97RS03656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921936, https://doi.org/10.1175/1520-0426(1996)013<0921:AMMFFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toms, B. A., J. M. Tomaszewski, D. D. Turner, and S. E. Koch, 2017: Analysis of a lower-tropospheric gravity wave train using direct and remote sensing measurement systems. Mon. Wea. Rev., 145, 27912812, https://doi.org/10.1175/MWR-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, https://doi.org/10.1029/2007JD008530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, https://doi.org/10.1175/JAMC-D-13-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and W. G. Blumberg, 2018: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., in press.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61, 26572674, https://doi.org/10.1175/JAS3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., E. J. Mlawer, and H. E. Revercomb, 2016: Water vapor observations in the ARM program. The Atmospheric Radiation Measurement Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0025.1.

    • Crossref
    • Export Citation
  • Wagner, T. J., W. F. Feltz, and S. A. Ackerman, 2008: The temporal evolution of convective indices in storm-producing environments. Wea. Forecasting, 23, 786794, https://doi.org/10.1175/2008WAF2007046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, T. J., D. D. Turner, L. K. Berg, and S. K. Krueger, 2013: Ground-based remote retrievals of cumulus entrainment rates. J. Atmos. Oceanic Technol., 30, 14601471, https://doi.org/10.1175/JTECH-D-12-00187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., K. Weber, D. D. Turner, and S. M. Spuler, 2016: Validation of a new water vapor micropulse differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 33, 23532372, https://doi.org/10.1175/JTECH-D-16-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2015: A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and simulation of water and energy cycles. Rev. Geophys., 53, 819895, https://doi.org/10.1002/2014RG000476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., E. Straka, E. Rasmussen, M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512, https://doi.org/10.1175/1520-0426(1997)014<1502:DADOAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yurganov, L., W. McMillan, C. Wilson, M. Fischer, S. Biraud, and C. Sweeney, 2010: Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra. Atmos. Meas. Tech., 3, 13191331, https://doi.org/10.5194/amt-3-1319-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3088 1705 221
PDF Downloads 1170 172 18