Overview of the NOAA/ESRL Federated Aerosol Network

Elisabeth Andrews Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Elisabeth Andrews in
Current site
Google Scholar
PubMed
Close
,
Patrick J. Sheridan National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Patrick J. Sheridan in
Current site
Google Scholar
PubMed
Close
,
John A. Ogren National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by John A. Ogren in
Current site
Google Scholar
PubMed
Close
,
Derek Hageman Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Derek Hageman in
Current site
Google Scholar
PubMed
Close
,
Anne Jefferson Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Anne Jefferson in
Current site
Google Scholar
PubMed
Close
,
Jim Wendell National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Jim Wendell in
Current site
Google Scholar
PubMed
Close
,
Andrés Alástuey Institute of Environmental Assessment and Water Research, Barcelona, Spain

Search for other papers by Andrés Alástuey in
Current site
Google Scholar
PubMed
Close
,
Lucas Alados-Arboledas Instituto Interuniversitario de Investagación del Sistema Terra en Andalucía, Centro Andaluz de Medio Ambiente (CEAMA), University of Granada, Granada, Spain

Search for other papers by Lucas Alados-Arboledas in
Current site
Google Scholar
PubMed
Close
,
Michael Bergin Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina

Search for other papers by Michael Bergin in
Current site
Google Scholar
PubMed
Close
,
Marina Ealo Institute of Environmental Assessment and Water Research, Barcelona, Spain

Search for other papers by Marina Ealo in
Current site
Google Scholar
PubMed
Close
,
A. Gannet Hallar Department of Atmospheric Science, University of Utah, Salt Lake City, Utah, and Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado

Search for other papers by A. Gannet Hallar in
Current site
Google Scholar
PubMed
Close
,
András Hoffer MTA-PE Air Chemistry Research Group, University of Pannonia, Veszprém, Hungary

Search for other papers by András Hoffer in
Current site
Google Scholar
PubMed
Close
,
Ivo Kalapov Basic Environmental Observatory Moussala, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

Search for other papers by Ivo Kalapov in
Current site
Google Scholar
PubMed
Close
,
Melita Keywood CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

Search for other papers by Melita Keywood in
Current site
Google Scholar
PubMed
Close
,
Jeongeun Kim Environmental Meteorology Research Division, National Institute of Meteorological Sciences, Seogwipo-si, Jeju-do, South Korea

Search for other papers by Jeongeun Kim in
Current site
Google Scholar
PubMed
Close
,
Sang-Woo Kim School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Sang-Woo Kim in
Current site
Google Scholar
PubMed
Close
,
Felicia Kolonjari Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Felicia Kolonjari in
Current site
Google Scholar
PubMed
Close
,
Casper Labuschagne Climate Environmental Research Monitoring, South African Weather Service, Stellenbosch, South Africa

Search for other papers by Casper Labuschagne in
Current site
Google Scholar
PubMed
Close
,
Neng-Huei Lin Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Neng-Huei Lin in
Current site
Google Scholar
PubMed
Close
,
AnneMarie Macdonald Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by AnneMarie Macdonald in
Current site
Google Scholar
PubMed
Close
,
Olga L. Mayol-Bracero Department of Environmental Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico

Search for other papers by Olga L. Mayol-Bracero in
Current site
Google Scholar
PubMed
Close
,
Ian B. McCubbin Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado

Search for other papers by Ian B. McCubbin in
Current site
Google Scholar
PubMed
Close
,
Marco Pandolfi Institute of Environmental Assessment and Water Research, Barcelona, Spain

Search for other papers by Marco Pandolfi in
Current site
Google Scholar
PubMed
Close
,
Fabienne Reisen CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

Search for other papers by Fabienne Reisen in
Current site
Google Scholar
PubMed
Close
,
Sangeeta Sharma Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Sangeeta Sharma in
Current site
Google Scholar
PubMed
Close
,
James P. Sherman Department of Physics and Astronomy, Appalachian State University, Boone, North Carolina

Search for other papers by James P. Sherman in
Current site
Google Scholar
PubMed
Close
,
Mar Sorribas El Arenosillo Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, National Institute for Aerospace Technology, Huelva, Spain

Search for other papers by Mar Sorribas in
Current site
Google Scholar
PubMed
Close
, and
Junying Sun State Key Laboratory of Severe Weather, and Key Laboratory of Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Junying Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To estimate global aerosol radiative forcing, measurements of aerosol optical properties are made by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)’s Global Monitoring Division (GMD) and their collaborators at 30 monitoring locations around the world. Many of the sites are located in regions influenced by specific aerosol types (Asian and Saharan desert dust, Asian pollution, biomass burning, etc.). This network of monitoring stations is a shared endeavor of NOAA and many collaborating organizations, including the World Meteorological Organization (WMO)’s Global Atmosphere Watch (GAW) program, the U.S. Department of Energy (DOE), several U.S. and foreign universities, and foreign science organizations. The result is a long-term cooperative program making atmospheric measurements that are directly comparable with those from all the other network stations and with shared data access. The protocols and software developed to support the program facilitate participation in GAW’s atmospheric observation strategy, and the sites in the NOAA/ESRL network make up a substantial subset of the GAW aerosol observations. This paper describes the history of the NOAA/ESRL Federated Aerosol Network, details about measurements and operations, and some recent findings from the network measurements.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Elisabeth Andrews, betsy.andrews@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-17-0175.2)

Abstract

To estimate global aerosol radiative forcing, measurements of aerosol optical properties are made by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)’s Global Monitoring Division (GMD) and their collaborators at 30 monitoring locations around the world. Many of the sites are located in regions influenced by specific aerosol types (Asian and Saharan desert dust, Asian pollution, biomass burning, etc.). This network of monitoring stations is a shared endeavor of NOAA and many collaborating organizations, including the World Meteorological Organization (WMO)’s Global Atmosphere Watch (GAW) program, the U.S. Department of Energy (DOE), several U.S. and foreign universities, and foreign science organizations. The result is a long-term cooperative program making atmospheric measurements that are directly comparable with those from all the other network stations and with shared data access. The protocols and software developed to support the program facilitate participation in GAW’s atmospheric observation strategy, and the sites in the NOAA/ESRL network make up a substantial subset of the GAW aerosol observations. This paper describes the history of the NOAA/ESRL Federated Aerosol Network, details about measurements and operations, and some recent findings from the network measurements.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Elisabeth Andrews, betsy.andrews@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-17-0175.2)

Supplementary Materials

    • Supplemental Materials (PDF 2.34 MB)
Save
  • Anderson, T. L., and J. A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci. Technol., 29, 5769, https://doi.org/10.1080/02786829808965551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., and Coauthors, 2005: An “A-Train” strategy for quantifying direct climate forcing by anthropogenic aerosols. Bull. Amer. Meteor. Soc., 86, 17951809, https://doi.org/10.1175/BAMS-86-12-1795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare, 2004: In situ aerosol profiles over the Southern Great Plains cloud and radiation testbed site: 1. Aerosol optical properties. J. Geophys. Res., 109, D06208, https://doi.org/10.1029/2003JD004025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, E., and Coauthors, 2006: Comparison of methods for deriving aerosol asymmetry parameter. J. Geophys. Res., 111, D05S04, https://doi.org/10.1029/2004JD005734.

    • Search Google Scholar
    • Export Citation
  • Andrews, E., and Coauthors, 2011: Climatology of aerosol radiative properties in the free troposphere. Atmos. Res., 102, 365393, https://doi.org/10.1016/j.atmosres.2011.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asmi, A., and Coauthors, 2013: Aerosol decadal trends—Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmos. Chem. Phys., 13, 895916, https://doi.org/10.5194/acp-13-895-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Backman, J., and Coauthors, 2017: On aethalometer measurement uncertainties and multiple scattering enhancement in the Arctic. Atmos. Meas. Tech., 10, 50395062, https://doi.org/10.5194/amt-10-5039-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodhaine, B. A., 1983: Aerosol measurements at four background sites. J. Geophys. Res., 88, 10 75310 768, https://doi.org/10.1029/JC088iC15p10753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolin, B., and R. J. Charlson, 1976: On the role of the tropospheric sulfur cycle in the shortwave radiative climate of the Earth. Ambio, 3, 4754.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., T. L. Anderson, and D. Campbell, 1999: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol., 30, 582600, https://doi.org/10.1080/027868299304435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bravo-Aranda, J. A., and Coauthors, 2015: Study of mineral dust entrainment in the planetary boundary layer by lidar depolarisation technique. Tellus, 67B, 262180, https://doi.org/10.3402/tellusb.v67.26180.

    • Search Google Scholar
    • Export Citation
  • Brock, C. A., and Coauthors, 2011: Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmos. Chem. Phys., 11, 24232453, https://doi.org/10.5194/acp-11-2423-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, 1991: Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus, 43AB, 152163, https://doi.org/10.1034/j.1600-0870.1991.00013.x.

    • Search Google Scholar
    • Export Citation
  • Collaud Coen, M., and Coauthors, 2013: Aerosol decadal trends—Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys., 13, 869894, https://doi.org/10.5194/acp-13-869-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delene, D. J., and J. A. Ogren, 2002: Variability of aerosol optical properties at four North American surface monitoring sites. J. Atmos. Sci., 59, 11351150, https://doi.org/10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denjean, C., and Coauthors, 2016: Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. Atmos., 121, 71177138, https://doi.org/10.1002/2016JD024783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Pierro, M., L. Jaegle, E. W. Eloranta, and S. Sharma, 2013: Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012). Atmos. Chem. Phys., 13, 70757095, https://doi.org/10.5194/acp-13-7075-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., and Coauthors, 2015: Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys., 15, 94139433, https://doi.org/10.5194/acp-15-9413-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallar, A. G., R. Petersen, E. Andrews, J. Michalsky, I. McCubbin, and J. A. Ogren, 2015: Contributions of dust and biomass burning to aerosols at a Colorado mountain-top site. Atmos. Chem. Phys., 15, 13 66513 679, https://doi.org/10.5194/acp-15-13665-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillamo, R. E., and E. I. Kauppinen, 1991: On the performance of the Berner low pressure impactor. Aerosol Sci. Technol., 14, 3347, https://doi.org/10.1080/02786829108959469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., and Coauthors, 2004: Aerosol data sources and their roles within PARAGON. Bull. Amer. Meteor. Soc., 85, 15111522, https://doi.org/10.1175/BAMS-85-10-1511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., and Coauthors, 2017: SAM-CAAM: A concept for acquiring systematic aircraft measurements to characterize aerosol air masses. Bull. Amer. Meteor. Soc., 98, 22152228, https://doi.org/10.1175/BAMS-D-16-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E., and Coauthors, 2017: Large contribution of coarse mode to aerosol microphysical and optical properties: Evidence from ground-based observations of a transpacific dust outbreak at a high-elevation North American site. J. Atmos. Sci., 74, 14311443, https://doi.org/10.1175/JAS-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834, https://doi.org/10.5194/acp-6-1815-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulmala, M., and Coauthors, 2011: General overview: European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI)—Integrating aerosol research from nano to global scales. Atmos. Chem. Phys., 11, 13 06113 143, https://doi.org/10.5194/acp-11-13061-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laj, P., and Coauthors, 2009: Measuring atmospheric composition change. Atmos. Environ., 43, 53515414, https://doi.org/10.1016/j.atmosenv.2009.08.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S., M. Lee, G. Lee, S. Kim, and K. Kang, 2012: Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos. Chem. Phys ., 12, 20072024, https://doi.org/10.5194/acp-12-2007-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund Myhre, C., and U. Baltensperger, 2012: Recommendations for a composite surface-based aerosol network. WMO GAW Rep. 207, 58 pp., http://library.wmo.int/pmb_ged/gaw_207.pdf.

    • Search Google Scholar
    • Export Citation
  • Mann, G. W., and Coauthors, 2014: Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmos. Chem. Phys., 14, 46794713, https://doi.org/10.5194/acp-14-4679-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui, H., and Coauthors, 2013: Spatial and temporal variations of new particle formation in East Asia using an NPF-explicit WRF-chem model: North-south contrast in new particle formation frequency. J. Geophys. Res. Atmos., 118, 11 64711 663, https://doi.org/10.1002/jgrd.50821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, T., and Coauthors, 2011a: Characterization and intercomparison of aerosol absorption photometers: Result of two intercomparison workshops. Atmos. Meas. Tech., 4, 245268, https://doi.org/10.5194/amt-4-245-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, T., M. Laborde, G. Kassell, and A. Wiedensohler, 2011b: Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer. Atmos. Meas. Tech., 4, 12911303, https://doi.org/10.5194/amt-4-1291-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2018a: Network publications. Accessed 21 May 2018, ftp://aftp.cmdl.noaa.gov/aerosol/doc/newsletter/publications.html.

  • NOAA, 2018b: ESRL/GMD aerosol measurements. Accessed 21 May 2018, www.esrl.noaa.gov/gmd/aero/instrumentation/instrum.html.

  • NOAA, 2018c: Aerosol system inlet. Accessed 21 May 2018, www.esrl.noaa.gov/gmd/aero/instrumentation/inlet_system.html.

  • NOAA, 2018d: CPD3 loggable instruments. Accessed 21 May 2018, www.esrl.noaa.gov/gmd/aero/instrumentation/cpd_inst.html.

  • Ogren, J. A., 1995: A systematic approach to in situ observation of aerosol properties. Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. Charlson and J. Heintzenberg, Eds., Environmental Sciences Research Report, Vol. ES 17, John Wiley & Sons, Ltd., 215–226.

  • Ogren, J. A., J. Wendell, E. Andrews, and P. Sheridan, 2017: Continuous light absorption photometer for long-term studies. Atmos. Meas. Tech., 10, 48054818, https://doi.org/10.5194/amt-10-4805-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlow, M., and Coauthors, 2006: Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement site. J. Geophys. Res., 111, D05S15, https://doi.org/10.1029/2004JD005646.

    • Search Google Scholar
    • Export Citation
  • Pandolfi, M., and Coauthors, 2018: A European aerosol phenomenology—6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites. Atmos. Chem. Phys., 18, 78777911, https://doi.org/10.5194/acp-18-7877-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K. D., T. A. Cahill, R. C. Schnell, and J. M. Harris, 1999: Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observatory, Hawaii. J. Geophys. Res., 104, 18 52118 533, https://doi.org/10.1029/1998JD100083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PSI, 2018: CATCOS aerosol measurements. Accessed 21 May 2018, www.psi.ch/catcos/.

  • Quinn, P. K., T. L. Miller, T. S. Bates, J. A. Ogren, E. Andrews, and G. E. Shaw, 2002: A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res., 107, 4130, https://doi.org/10.1029/2000JD000037.

    • Search Google Scholar
    • Export Citation
  • Schmeisser, L., and Coauthors, 2017: Classifying aerosol type using in situ surface spectral aerosol optical properties. Atmos. Chem. Phys., 17, 12 09712 120, https://doi.org/10.5194/acp-17-12097-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeisser, L., and Coauthors, 2018: Seasonality of aerosol optical properties in the Arctic. Atmos. Chem. Phys., 18 ,11 59911 622, https://doi.org/10.5194/acp-18-11599-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, N. C. P., and J. E. Barnes, 2016: Boundary layer characteristics over a high altitude station, Mauna Loa Observatory. Aerosol Air Qual. Res., 16, 729737, https://doi.org/10.4209/aaqr.2015.05.0347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., M. Ishizawa, D. Chan, D. Lavoué, E. Andrews, K. Eleftheriadis, and S. Maksyutov, 2013: 16-year simulation of Arctic black carbon: Transport, source contribution, and sensitivity analysis on deposition. J. Geophys. Res. Atmos., 118, 943964, https://doi.org/10.1029/2012JD017774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, S., and Coauthors, 2017: An evaluation of three methods for measuring black carbon at Alert, Canada. Atmos. Chem. Phys., 17, 15 22515 243, https://doi.org/10.5194/acp-17-15225-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106, 20 73520 747, https://doi.org/10.1029/2001JD000785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., E. Andrews, J. A. Ogren, J. Tackett, and D. M. Winker, 2012: Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements. Atmos. Chem. Phys., 12, 11 69511 721, https://doi.org/10.5194/acp-12-11695-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., E. Andrews, L. Schmeisser, B. Vasel, and J. A. Ogren, 2016: Aerosol measurements at South Pole: Climatology and impact of local contamination. Aerosol Air Qual. Res., 16, 855872, https://doi.org/10.4209/aaqr.2015.05.0358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J. P., and A. McComiskey, 2018: Measurement-based climatology of aerosol direct radiative effect, its sensitivities, and uncertainties from a background southeast U.S. site. Atmos. Chem. Phys., 18, 41314152, https://doi.org/10.5194/acp-18-4131-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, J. P., P. J. Sheridan, J. A. Ogren, E. Andrews, D. C. Hageman, L. Schmeisser, A. Jefferson, and S. Sharma, 2015: A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions. Atmos. Chem. Phys., 15, 12 48712 517, https://doi.org/10.5194/acp-15-12487-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinozuka, Y., and Coauthors, 2015: The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: Indications of underlying aerosol processes and implications for satellite-based CCN estimates. Atmos. Chem. Phys., 15, 75857604, https://doi.org/10.5194/acp-15-7585-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, P. R., and Coauthors, 2017: Evaluation of ground-based black carbon measurements by filter-based photometers at two Arctic sites. J. Geophys. Res. Atmos., 122, 35443572, https://doi.org/10.1002/2016JD025843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skeie, R. B., T. Berntsen, G. Myhre, J. A. Pedersen, J. Strom, S. Gerland, and J. A. Ogren, 2011: Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmos. Chem. Phys., 11, 68096836, https://doi.org/10.5194/acp-11-6809-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorribas, M., J. A. Ogren, F. J. Olmo, A. Quirantes, R. Fraile, M. Gil-Ojeda, and L. Alados-Arboledas, 2015: Assessment of African desert dust episodes over the southwest Spain at sea level using in situ aerosol optical and microphysical properties. Tellus, 67B, 27482, https://doi.org/10.3402/tellusb.v67.27482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorribas, M., E. Andrews, J. A. Adame, and M. Yela, 2017: An anomalous African dust event and its impact on aerosol radiative forcing on the Southwest Atlantic coast of Europe in February 2016. Sci. Total Environ., 583, 269279, https://doi.org/10.1016/j.scitotenv.2017.01.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., and Coauthors, 2010: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos. Chem. Phys., 10, 47754793, https://doi.org/10.5194/acp-10-4775-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, R. S., G. P. Anderson, E. Andrews, E. G. Dutton, E. P. Shettle, and A. Berk, 2007: Incursions and radiative impact of Asian dust in northern Alaska. Geophys. Res. Lett., 34, L14815, https://doi.org/10.1029/2007GL029878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titos, G., and Coauthors, 2017: Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment. Sci. Total Environ., 578, 613625, https://doi.org/10.1016/j.scitotenv.2016.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2016: International Arctic Systems for Observing the Atmosphere: An International Polar Year legacy consortium. Bull. Amer. Meteor. Soc., 97, 10331056, https://doi.org/10.1175/BAMS-D-14-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, R., and Coauthors, 2018: Representativeness error in the ground-level observation networks for black carbon radiation absorption. Geophys. Res. Lett., 45, 21062114, https://doi.org/10.1002/2017GL076817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiedensohler, A., and Coauthors, 2012: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech., 5, 657685, https://doi.org/10.5194/amt-5-657-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, J. D., 1956: Isokinetic flow and sampling. J. Air Pollut. Control Assoc., 5, 226245, https://doi.org/10.1080/00966665.1956.10467715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2011: WMO/GAW standard operating procedures for in-situ measurements of aerosol mass concentration, light scattering and light absorption. World Meteorological Organization GAW Rep. 200, 130 pp., http://library.wmo.int/pmb_ged/gaw_200.pdf.

  • WMO, 2016: WMO/GAW aerosol measurement procedures, guidelines, and recommendations. 2nd ed. World Meteorological Organization GAW Rep. 227, 93 pp., https://library.wmo.int/opac/doc_num.php?explnum_id=3073.

  • WMO, 2018: Low-cost sensors for the measurement of atmospheric composition: Overview of topic and future applications. A. C. Lewis, E. von Schneidemesser, and R. E. Peltier, Eds., WMO Rep. 1215, 46 pp., www.wmo.int/pages/prog/arep/gaw/documents/Low_cost_sensors_post_review_final.pdf.

  • Yu, F., and A. G. Hallar, 2014: Difference in particle formation at a mountaintop location during spring and summer: Implications for the role of sulfuric acid and organics in nucleation. J. Geophys. Res. Atmos., 119, 12 24612 255, https://doi.org/10.1002/2014JD022136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanatta, M., and Coauthors, 2016: A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ., 145, 346364, https://doi.org/10.1016/j.atmosenv.2016.09.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2907 926 59
PDF Downloads 1679 517 40