Ozonesonde Quality Assurance: The JOSIE–SHADOZ (2017) Experience

Anne M. Thompson NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Anne M. Thompson in
Current site
Google Scholar
PubMed
Close
,
Herman G. J. Smit Institute of Chemistry and Dynamics of the Geosphere: Troposphere, Jülich Research Centre, Jülich, Germany

Search for other papers by Herman G. J. Smit in
Current site
Google Scholar
PubMed
Close
,
Jacquelyn C. Witte NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications Inc., Lanham, Maryland

Search for other papers by Jacquelyn C. Witte in
Current site
Google Scholar
PubMed
Close
,
Ryan M. Stauffer NASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland

Search for other papers by Ryan M. Stauffer in
Current site
Google Scholar
PubMed
Close
,
Bryan J. Johnson Global Monitoring Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Bryan J. Johnson in
Current site
Google Scholar
PubMed
Close
,
Gary Morris Natural Sciences, St. Edward's University, Austin, Texas

Search for other papers by Gary Morris in
Current site
Google Scholar
PubMed
Close
,
Peter von der Gathen Alfred Wegener Institute, Potsdam, Germany

Search for other papers by Peter von der Gathen in
Current site
Google Scholar
PubMed
Close
,
Roeland Van Malderen Royal Meteorological Institute of Belgium, Brussels, Belgium

Search for other papers by Roeland Van Malderen in
Current site
Google Scholar
PubMed
Close
,
Jonathan Davies Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Jonathan Davies in
Current site
Google Scholar
PubMed
Close
,
Ankie Piters Royal Dutch Meteorological Institute, de Bilt, Netherlands

Search for other papers by Ankie Piters in
Current site
Google Scholar
PubMed
Close
,
Marc Allaart Royal Dutch Meteorological Institute, de Bilt, Netherlands

Search for other papers by Marc Allaart in
Current site
Google Scholar
PubMed
Close
,
Françoise Posny Laboratoire de l’Atmosphère et des Cyclones, UMR8105, Université de la Réunion, Météo-France, CNRS, La Réunion, France

Search for other papers by Françoise Posny in
Current site
Google Scholar
PubMed
Close
,
Rigel Kivi Finnish Meteorological Institute, Sodankylä, Finland

Search for other papers by Rigel Kivi in
Current site
Google Scholar
PubMed
Close
,
Patrick Cullis Global Monitoring Division, NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado

Search for other papers by Patrick Cullis in
Current site
Google Scholar
PubMed
Close
,
Nguyen Thi Hoang Anh Vietnam Meteorological Hydrological Administration, Hanoi, Vietnam

Search for other papers by Nguyen Thi Hoang Anh in
Current site
Google Scholar
PubMed
Close
,
Ernesto Corrales University of Costa Rica, San Pedro, San José, Costa Rica

Search for other papers by Ernesto Corrales in
Current site
Google Scholar
PubMed
Close
,
Tshidi Machinini South African Weather Service, Pretoria, South Africa

Search for other papers by Tshidi Machinini in
Current site
Google Scholar
PubMed
Close
,
Francisco R. da Silva Laboratory of Environmental and Tropical Variables, Brazilian Institute of Space Research, Natal, Brazil

Search for other papers by Francisco R. da Silva in
Current site
Google Scholar
PubMed
Close
,
George Paiman Meteorological Service of Suriname, Paramaribo, Suriname

Search for other papers by George Paiman in
Current site
Google Scholar
PubMed
Close
,
Kennedy Thiong’o Kenyan Meteorological Department, Nairobi, Kenya

Search for other papers by Kennedy Thiong’o in
Current site
Google Scholar
PubMed
Close
,
Zamuna Zainal Atmospheric Science and Cloud Seeding Division, Malaysian Meteorological Department, Petaling Jaya, Selangor, Malaysia

Search for other papers by Zamuna Zainal in
Current site
Google Scholar
PubMed
Close
,
George B. Brothers CHEMAL, and NASA Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by George B. Brothers in
Current site
Google Scholar
PubMed
Close
,
Katherine R. Wolff Science Systems and Applications Inc., Lanham, Maryland, and NASA Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by Katherine R. Wolff in
Current site
Google Scholar
PubMed
Close
,
Tatsumi Nakano Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Tatsumi Nakano in
Current site
Google Scholar
PubMed
Close
,
Rene Stübi MeteoSwiss, Payerne, Switzerland

Search for other papers by Rene Stübi in
Current site
Google Scholar
PubMed
Close
,
Gonzague Romanens MeteoSwiss, Payerne, Switzerland

Search for other papers by Gonzague Romanens in
Current site
Google Scholar
PubMed
Close
,
Gert J. R. Coetzee South African Weather Service, Pretoria, South Africa

Search for other papers by Gert J. R. Coetzee in
Current site
Google Scholar
PubMed
Close
,
Jorge A. Diaz University of Costa Rica, San Pedro, San José, Costa Rica

Search for other papers by Jorge A. Diaz in
Current site
Google Scholar
PubMed
Close
,
Sukarni Mitro Meteorological Service of Suriname, Paramaribo, Suriname

Search for other papers by Sukarni Mitro in
Current site
Google Scholar
PubMed
Close
,
Maznorizan Mohamad Atmospheric Science and Cloud Seeding Division, Malaysian Meteorological Department, Petaling Jaya, Selangor, Malaysia

Search for other papers by Maznorizan Mohamad in
Current site
Google Scholar
PubMed
Close
, and
Shin-Ya Ogino Department of Coupled Ocean-Atmosphere-Land Processes Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Shin-Ya Ogino in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ∼100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and are used for climatologies and analysis of trends, especially in the lower stratosphere where satellites are most uncertain. The electrochemical concentration cell (ECC) ozonesonde has been deployed at ∼100 stations worldwide since the 1960s, with changes over time in manufacture and procedures, including details of the cell chemical solution and data processing. As a consequence, there are biases among different stations and discontinuities in profile time series from individual site records. For 22 years the Jülich (Germany) Ozonesonde Intercomparison Experiment (JOSIE) has periodically tested ozonesondes in a simulation chamber designated the World Calibration Centre for Ozonesondes (WCCOS) by WMO. During October–November 2017 a JOSIE campaign evaluated the sondes and procedures used in Southern Hemisphere Additional Ozonesondes (SHADOZ), a 14-station sonde network operating in the tropics and subtropics. A distinctive feature of the 2017 JOSIE was that the tests were conducted by operators from eight SHADOZ stations. Experimental protocols for the SHADOZ sonde configurations, which represent most of those in use today, are described, along with preliminary results. SHADOZ stations that follow WMO-recommended protocols record total ozone within 3% of the JOSIE reference instrument. These results and prior JOSIEs demonstrate that regular testing is essential to maintain best practices in ozonesonde operations and to ensure high-quality data for the satellite and ozone assessment communities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Anne M. Thompson, anne.m.thompson@nasa.gov

Abstract

The ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ∼100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and are used for climatologies and analysis of trends, especially in the lower stratosphere where satellites are most uncertain. The electrochemical concentration cell (ECC) ozonesonde has been deployed at ∼100 stations worldwide since the 1960s, with changes over time in manufacture and procedures, including details of the cell chemical solution and data processing. As a consequence, there are biases among different stations and discontinuities in profile time series from individual site records. For 22 years the Jülich (Germany) Ozonesonde Intercomparison Experiment (JOSIE) has periodically tested ozonesondes in a simulation chamber designated the World Calibration Centre for Ozonesondes (WCCOS) by WMO. During October–November 2017 a JOSIE campaign evaluated the sondes and procedures used in Southern Hemisphere Additional Ozonesondes (SHADOZ), a 14-station sonde network operating in the tropics and subtropics. A distinctive feature of the 2017 JOSIE was that the tests were conducted by operators from eight SHADOZ stations. Experimental protocols for the SHADOZ sonde configurations, which represent most of those in use today, are described, along with preliminary results. SHADOZ stations that follow WMO-recommended protocols record total ozone within 3% of the JOSIE reference instrument. These results and prior JOSIEs demonstrate that regular testing is essential to maintain best practices in ozonesonde operations and to ensure high-quality data for the satellite and ozone assessment communities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Anne M. Thompson, anne.m.thompson@nasa.gov
Save
  • Albritton, D., and Coauthors, 1991: Scientific assessment of ozone depletion: 1991. Global Ozone Research and Monitoring Project Rep. 25, 326 pp.

    • Search Google Scholar
    • Export Citation
  • Albritton, D., and Coauthors, 1995: Scientific assessment of ozone depletion: 1994. Global Ozone Research and Monitoring Project Rep. 37, 529 pp.

    • Search Google Scholar
    • Export Citation
  • Ajavon, A.-L. N., and Coauthors, 2011: Scientific assessment of ozone depletion: 2010. Global Ozone Research and Monitoring Project Rep. 52, 514 pp.

    • Search Google Scholar
    • Export Citation
  • Ajavon, A.-L. N., and Coauthors, 2015: Scientific assessment of ozone depletion: 2014. Global Ozone Research and Monitoring Project Rep. 55, 416 pp., www.esrl.noaa.gov/csd/assessments/ozone/2014/chapters/2014OzoneAssessment.pdf.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., and Coauthors, 2008: Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes. J. Geophys. Res., 113, D04307, https://doi.org/10.1029/2007JD008975.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., R. Stübi, F. J. Schmidlin, J. L. Mercer, H. G. J. Smit, B. J. Johnson, R. Kivi, and B. Nardi, 2017: Methods to homogenize electrochemical concentration cell (ECC) ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer. Atmos. Meas. Tech., 10, 20212043, https://doi.org/10.5194/amt-10-2021-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fishman, J., and Coauthors, 2008: Remote sensing of tropospheric pollution from space. Bull. Amer. Meteor. Soc., 89, 805821, https://doi.org/10.1175/2008BAMS2526.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, N., and Coauthors, 1998: Assessment of trends in the vertical distribution of ozone. SPARC Rep. 1/WMO Global Ozone Research and Monitoring Project Rep. 43, 290 pp., www.sparc-climate.org/fileadmin/customer/6_Publications/SPARC_reports_PDF/1_Ozone_SPARCreportNo1_May1998_redFile.pdf.

    • Search Google Scholar
    • Export Citation
  • Hilsenrath, E., and Coauthors, 1986: Results from the balloon ozone intercomparison campaign (BOIC). J. Geophys. Res., 91, 13 13713 152, https://doi.org/10.1029/JD091iD12p13137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, D., and Coauthors, 2016: Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech., 9, 24972534, https://doi.org/10.5194/amt-9-2497-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., A. M. Thompson, and F. J. Schmidlin, 2012: Classification of Ascension Island and Natal ozonesondes using self-organizing maps. J. Geophys. Res., 117, D04302, https://doi.org/10.1029/2011JD016573.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. J., S. J. Oltmans, H. Voemel, H. G. J. Smit, T. Deshler, and C. Kroeger, 2002: ECC ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions. J. Geophys. Res., 107, 4393, https://doi.org/10.1029/2001JD000557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kley, D., P. J. Crutzen, H. G. J. Smit, H. Vömel, S. J. Oltmans, H. Grassl, and V. Ramanathan, 1996: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry. Science, 274, 230233, https://doi.org/10.1126/science.274.5285.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., 1986: Operations handbook: Ozone measurements to 40 km altitude with model 4A-ECC-ozone sondes. NOAA Tech. Memo. ERL-ARL- 149, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Komhyr, W. D., R. A. Barnes, G. B. Brothers, J. A. Lathrop, and D. P. Opperman, 1995: Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J. Geophys. Res., 100, 92319244, https://doi.org/10.1029/94JD02175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., and G. J. Labow, 2012: Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J. Geophys. Res., 117, D10303, https://doi.org/10.1029/2011JD017006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melamed, M. L., P. S. Monks, A. H. Goldstein, M. G. Lawrence, and J. Jennings, 2015: The international global atmospheric chemistry (IGAC) project: Facilitating atmospheric chemistry research for 25 years. Anthropocene, 12, 1728, https://doi.org/10.1016/j.ancene.2015.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohnen, V., 1996: Update on IGAC’s Global Tropospheric Ozone Network (GLONET) activity and the International Tropospheric Ozone Years (ITOY). IGACtivities Newsletter, IGAC Project Office, Boulder, CO, 4–6, www.igacproject.org/sites/default/files/2016-07/Issue_03_Jan_1996.pdf.

  • Newton, R., G. Vaughan, H. M. A. Ricketts, L. L. Pan, A. J. Weinheimer, and C. Chemel, 2016: Ozonesonde profiles from the West Pacific warm pool: Measurements and validation. Atmos. Chem. Phys., 16, 619634, https://doi.org/10.5194/acp-16-619-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proffitt, M. H., and R. J. McLaughlin, 1983: Fast response dual-beam UV-absorption photometer suitable for use on stratospheric balloons. Rev. Sci. Instrum., 54, 17191728, https://doi.org/10.1063/1.1137316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rex, M., and Coauthors, 2014: A tropical West Pacific OH minimum and implications for stratospheric composition. Atmos. Chem. Phys., 14, 48274841, https://doi.org/10.5194/acp-14-4827-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smit, H. G. J., and D. Kley, 1998: JOSIE: The 1996 WMO international intercomparison of ozonesondes under quasi flight conditions in the environmental simulation chamber at Jülich. WMO Global Atmosphere Watch Rep. 130, WMO/TD-926, 108 pp.

    • Search Google Scholar
    • Export Citation
  • Smit, H. G. J., W. Sträter, M. Helten, and D. Kley, 2000: Environmental simulation facility to calibrate airborne ozone and humidity sensors. Jülich Research Center Rep. Jül-3796, 38 pp.

    • Search Google Scholar
    • Export Citation
  • Smit, H. G. J., and Coauthors, 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Jülich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res., 112, D19306, https://doi.org/10.1029/2006JD007308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smit, H. G. J., S. Oltmans, T. Deshler, D. Tarasick, B. Johnson, F. Schmidlin, R. Stuebi, and J. Davies, 2012: SI2N/O3S-DQA activity: Guide lines for homogenization of ozone sonde data. SPARC–IGACO–IOC Rep., 48 pp., www-das.uwyo.edu/∼deshler/NDACC_O3Sondes/O3s_DQA/O3S-DQA-Guidelines%20Homogenization-V2-19November2012.pdf.

    • Search Google Scholar
    • Export Citation
  • Smit, H. G. J., and Coauthors, 2014: Quality assurance and quality control for ozonesonde measurements in GAW. World Meteorological Organization GAW Rep. 201, 94 pp., www.wmo.int/pages/prog/arep/gaw/documents/FINAL_GAW_201_Oct_2014.pdf.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., and Coauthors, 2017: An update on ozone profile trends for the period 2000 to 2016. Atmos. Chem. Phys., 17, 10 67510 690, https://doi.org/10.5194/acp-17-10675-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sterling, C. W., and Coauthors, 2018: Homogenizing and estimating the uncertainty in NOAA’s long-term vertical ozone profile records measured with the electrochemical concentration cell ozonesonde. Atmos. Meas. Tech., 11, 36613687, https://doi.org/10.5194/amt-11-3661-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., 1992: The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes. Science, 256, 11571165, https://doi.org/10.1126/science.256.5060.1157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 1996: Where did tropospheric ozone over southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE TRACE A, and SAFARI 1992. J. Geophys. Res., 101, 24 25124 278, https://doi.org/10.1029/96JD01463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003a: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res., 108, 8238, https://doi.org/10.1029/2001JD000967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2003b: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 2. Tropospheric variability and the zonal wave-one. J. Geophys. Res., 108, 8241, https://doi.org/10.1029/2002JD002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., J. C. Witte, S. J. Oltmans, and F. J. Schmidlin, 2004: SHADOZ—A tropical ozonesonde–radiosonde network for the atmospheric community. Bull. Amer. Meteor. Soc., 85, 15491564, https://doi.org/10.1175/BAMS-85-10-1549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., J. C. Witte, H. G. J. Smit, S. J. Oltmans, B. J. Johnson, V. W. J. H. Kirchhoff, and F. J. Schmidlin, 2007: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. J. Geophys. Res., 112, D03304, https://doi.org/10.1029/2005JD007042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., S. J. Oltmans, D. W. Tarasick, P. von der Gathen, H. G. J. Smit, and J. C. Witte, 2011: Strategic ozone sounding networks: Review of design and accomplishments. Atmos. Environ., 45, 21452163, https://doi.org/10.1016/j.atmosenv.2010.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2012: Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology: Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products. J. Geophys. Res., 117, D23301, https://doi.org/10.1029/2011JD016911.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., and Coauthors, 2017: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone profiles (1998–2016): 2. Comparisons with satellites and ground-based instruments. J. Geophys. Res. Atmos., 122, 13 00013 025, https://doi.org/10.1002/2017JB014168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witte, J. C., and Coauthors, 2017: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) profile records (1998–2015): 1. Methodology and evaluation. J. Geophys. Res., 122, 66116636, https://doi.org/10.1002/2016JD026403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witte, J. C., A. M. Thompson, H. G. J. Smit, H. Vömel, F. Posny, and R. Stübi, 2018: First reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) profile records: 3. Uncertainty in ozone profile and total column. J. Geophys. Res. Atmos., 123, 32433268, https://doi.org/10.1002/2017JD027791.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4373 2833 229
PDF Downloads 1176 220 13