A New Perspective on Coastally Trapped Disturbances Using Data from the Satellite Era

Timothy W. Juliano Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Timothy W. Juliano in
Current site
Google Scholar
PubMed
Close
,
Zachary J. Lebo Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by Zachary J. Lebo in
Current site
Google Scholar
PubMed
Close
,
Gregory Thompson Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gregory Thompson in
Current site
Google Scholar
PubMed
Close
, and
David A. Rahn Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas

Search for other papers by David A. Rahn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability of global climate models to simulate accurately marine stratiform clouds continues to challenge the atmospheric science community. These cloud types, which account for a large uncertainty in Earth’s radiation budget, are generally difficult to characterize due to their shallowness and spatial inhomogeneity. Previous work investigating marine boundary layer (MBL) clouds off the California coast has focused on clouds that form under the typical northerly flow regime during the boreal warm season. From about June through September, however, these northerly winds may reverse and become southerly as part of a coastally trapped disturbance (CTD). As the flow surges northward, it is accompanied by a broad cloud deck. Because these events are difficult to forecast, in situ observations of CTDs are few and far between, and little is known about their cloud physical properties. A climatological perspective of 23 CTD events—spanning the years from 2004 to 2016—is presented using several data products, including model reanalyses, buoys, and satellites. For the first time, satellite retrievals suggest that CTD cloud decks may play a unique role in the radiation budget due to a combination of aerosol sources that enhance cloud droplet number concentration and reduce cloud droplet effective radius. This particular type of cloud regime should therefore be treated differently than that which is more commonly found in the summertime months over the northeast Pacific Ocean. The potential influence of a coherent wind stress cycle on sea surface temperatures and sea salt aerosol is also explored.

CURRENT AFFILIATION: Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Zachary J. Lebo, zlebo@uwyo.edu

Abstract

The ability of global climate models to simulate accurately marine stratiform clouds continues to challenge the atmospheric science community. These cloud types, which account for a large uncertainty in Earth’s radiation budget, are generally difficult to characterize due to their shallowness and spatial inhomogeneity. Previous work investigating marine boundary layer (MBL) clouds off the California coast has focused on clouds that form under the typical northerly flow regime during the boreal warm season. From about June through September, however, these northerly winds may reverse and become southerly as part of a coastally trapped disturbance (CTD). As the flow surges northward, it is accompanied by a broad cloud deck. Because these events are difficult to forecast, in situ observations of CTDs are few and far between, and little is known about their cloud physical properties. A climatological perspective of 23 CTD events—spanning the years from 2004 to 2016—is presented using several data products, including model reanalyses, buoys, and satellites. For the first time, satellite retrievals suggest that CTD cloud decks may play a unique role in the radiation budget due to a combination of aerosol sources that enhance cloud droplet number concentration and reduce cloud droplet effective radius. This particular type of cloud regime should therefore be treated differently than that which is more commonly found in the summertime months over the northeast Pacific Ocean. The potential influence of a coherent wind stress cycle on sea surface temperatures and sea salt aerosol is also explored.

CURRENT AFFILIATION: Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Zachary J. Lebo, zlebo@uwyo.edu
Save
  • Agrawal, H., Q. G. J. Malloy, W. A. Welch, J. W. Miller, and D. R. Crocker III, 2008: In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos. Environ., 42, 55045510, https://doi.org/10.1016/j.atmosenv.2008.02.053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachiochi, D. R., and T. N. Krishnamurti, 2000: Enhanced low-level stratus in the FSU coupled ocean–atmosphere model. Mon. Wea. Rev., 128, 30833103, https://doi.org/10.1175/1520-0493(2000)128<3083:ELLSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. D. Olivier, and D. H. Levinson, 1993: Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50, 39593982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., C. E. Dorman, C. A. Friehe, L. K. Rosenfeld, and C. D. Winant, 1987: Local atmospheric forcing during the Coastal Ocean Dynamics Experiment: 1. A description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. J. Geophys. Res., 92, 14671488, https://doi.org/10.1029/JC092iC02p01467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., 2007: Global assessment of marine boundary layer cloud droplet number concentration from satellite. J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R, and J. Rausch, 2017: Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations. Atmos. Chem. Phys., 17, 98159836, https://doi.org/10.5194/acp-17-9815-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., C. F. Mass, and J. E. Overland, 1996: Coastally trapped wind reversals along the United States West Coast during the warm season. Part I: Climatology and temporal evolution. Mon. Wea. Rev., 124, 430445, https://doi.org/10.1175/1520-0493(1996)124<0430:CTWRAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, et al., Eds., Cambridge University Press, 571657.

  • Brenguier, J. L., and Coauthors, 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus, 52B, 815827, https://doi.org/10.1034/j.1600-0889.2000.00047.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2009: Effect of biomass burning on marine stratocumulus clouds off the California coast. Atmos. Chem. Phys., 9, 88418856, https://doi.org/10.5194/acp-9-8841-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burleyson, C. D., S. P. de Szoeke, S. E. Yuter, M. Wilbanks, and W. A. Brewer, 2013: Ship-based observations of the diurnal cycle of southeast Pacific marine stratocumulus clouds and precipitation. J. Atmos. Sci., 70, 38763894, https://doi.org/10.1175/JAS-D-13-01.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., and C. S. Bretherton, 2009: Large eddy simulation of the diurnal cycle in Southeast Pacific stratocumulus. J. Atmos. Sci., 66, 432449, https://doi.org/10.1175/2008JAS2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in Southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791, https://doi.org/10.1175/JAS3561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clausnitzer, H., and M. Singer, 1997: Intensive land preparation emits respirable dust. Calif. Agric., 51, 2730, https://doi.org/10.3733/ca.v051n02p27.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coggon, M. M., and Coauthors, 2012: Ship impacts on the marine atmosphere: Insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmos. Chem. Phys., 12, 84398458, https://doi.org/10.5194/acp-12-8439-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coggon, M., and Coauthors, 2014: Observations of continental biogenic impacts on marine aerosol and clouds off the coast of California. J. Geophys. Res. Atmos., 119, 67246748, https://doi.org/10.1002/2013JD021228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., T. R. Ault, and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv., 1, e1400082, https://doi.org/10.1126/sciadv.1400082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosbie, E., and Coauthors, 2016: Stratocumulus cloud clearings and notable thermodynamic and aerosol contrasts across the clear–cloudy interface. J. Atmos. Sci., 73, 10831099, https://doi.org/10.1175/JAS-D-15-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delecluse, P., M. K. Davey, Y. Kitamura, S. G. H. Philander, M. Suarez, and L. Bengtsson, 1998: Coupled general circulation modeling of the tropical Pacific. J. Geophys. Res., 103, 14 35714 373, https://doi.org/10.1029/97JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., 1985: Evidence of Kelvin waves in California’s marine layer and related eddy generation. Mon. Wea. Rev., 113, 827839, https://doi.org/10.1175/1520-0493(1985)113<0827:EOKWIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117, https://doi.org/10.1175/1520-0469(1999)056<4100:TIOGCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, L., H. Shen, Y. Zhu, H. Gao, and X. Yao, 2017: Insight into generation and evolution of sea-salt aerosols from field measurements in diversified marine and coastal atmospheres. Sci. Rep., 7, 41260, https://doi.org/10.1038/srep41260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., L. Washburn, C. E. Dorman, C. Gotschalk, and K. Lombardo, 2016: Synoptic forcing of wind relaxations at Pt. Conception, California. J. Geophys. Res. Oceans, 121, 57115730, https://doi.org/10.1002/2016JC011699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flynn, K. R., M. R. Fewings, C. Gotschalk, and K. Lombardo, 2017: Large-scale anomalies in sea-surface temperature and air-sea fluxes during wind relaxation events off the United States West Coast in summer. J. Geophys. Res. Oceans, 122, 25742594, https://doi.org/10.1002/2016JC012613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., and J. Rutllant, 2003: Coastal lows along the subtropical west coast of South America: Numerical simulation of a typical case. Mon. Wea. Rev., 131, 891908, https://doi.org/10.1175/1520-0493(2003)131<0891:CLATSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R., J. A. Rutllant, and H. Fuenzalida, 2002: Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon. Wea. Rev., 130, 7588, https://doi.org/10.1175/1520-0493(2002)130<0075:CLATSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, R. E., K. M. Gierlus, P. K. Hudson, and V. H. Grassin, 2007: Generation of internally mixed insoluble and soluble aerosol particles to investigate the impact of atmospheric aging and heterogeneous processing on the CCN activity of mineral dust aerosol. Aerosol Sci. Technol., 41, 914924, https://doi.org/10.1080/02786820701557222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1977: Coastally trapped waves in the atmosphere. Quart. J. Roy. Meteor. Soc., 103, 431440, https://doi.org/10.1002/qj.49710343704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goela, P. C., C. Cordeiro, S. Danchenko, J. Icely, S. Cristina, and A. Newton, 2016: Time series analysis of data for sea surface temperature and upwelling components from the southwest coast of Portugal. J. Mar. Syst., 163, 1222, https://doi.org/10.1016/j.jmarsys.2016.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, S. L., 2003: A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles, 17, 1097, https://doi.org/10.1029/2003GB002079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, S. L., L. A. Barrie, and J.-P. Blanchet, 1997: Modeling sea-salt aerosols in the atmosphere: 1. model development. J. Geophys. Res., 102, 38053818, https://doi.org/10.1029/96JD02953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haack, T., S. D. Burk, C. Dorman, and D. Rogers, 2001: Supercritical flow interaction within the Cape Blanco–Cape Mendocino orographic complex. Mon. Wea. Rev., 129, 688708, https://doi.org/10.1175/1520-0493(2001)129<0688:SFIWTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, J. L., T. E. Gill, and B. A. Schichtel, 2017: Spatial and seasonal variability in fine mineral dust and coarse aerosol mass at remote sites across the United States. J. Geophys. Res. Atmos., 122, 30803097, https://doi.org/10.1002/2016JD026290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., D. S. Covert, H. H. Jonsson, and R. Woods, 2009: Differentiating natural and anthropogenic cloud condensation nuclei in the California coastal zone. Tellus, 61B, 669676, https://doi.org/10.1111/j.1600-0889.2009.00435.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegg, D., D. S. Covert, H. H. Jonsson, and R. K. Woods, 2010: The contribution of anthropogenic aerosols to aerosol light-scattering and CCN activity in the California coastal zone. Atmos. Chem. Phys., 10, 73417351, https://doi.org/10.5194/acp-10-7341-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and L. M. Leslie, 1986: Ducted coastal ridging over S.E. Australia. Quart. J. Roy. Meteor. Soc., 112, 731748, https://doi.org/10.1002/qj.49711247310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., and D. R. Cayan, 2013: The variability of California summertime marine stratus: Impacts on surface air temperatures. J. Geophys. Res. Atmos., 118, 91059122, https://doi.org/10.1002/jgrd.50652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaeglé, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin, 2011: Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys., 11, 31373157, https://doi.org/10.5194/acp-11-3137-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. L. Kubar, S. Wong, W. S. Olson, and D. E. Waliser, 2014: Modulation of marine low clouds associated with the tropical intraseasonal variability over the eastern Pacific. J. Climate, 27, 55605574, https://doi.org/10.1175/JCLI-D-13-00569.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juliano, T. W., T. R. Parish, D. A. Rahn, and D. C. Leon, 2017: An atmospheric hydraulic jump in the Santa Barbara Channel. J. Appl. Meteor. Climatol., 56, 29812998, https://doi.org/10.1175/JAMC-D-16-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazil, J., G. Feingold, and T. Yamaguchi, 2016: Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations. Atmos. Chem. Phys., 16, 58115839, https://doi.org/10.5194/acp-16-5811-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloesel, K. A., 1992: Marine stratocumulus cloud clearing episodes observed during FIRE. Mon. Wea. Rev., 120, 565578, https://doi.org/10.1175/1520-0493(1992)120<0565:MSCCEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koraĉin, D., and C. E. Dorman, Eds., 2017: Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer, 537 pp.

    • Crossref
    • Export Citation
  • Lacis, A. A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth’s atmosphere. J. Atmos. Sci., 31, 118133, https://doi.org/10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langley, L., W. R. Leaitch, U. Lohmann, N. C. Shantz, and D. R. Worsnop, 2010: Contributions from DMS and ship emissions to CCN observed over the summertime North Pacific. Atmos. Chem. Phys., 10, 12871314, https://doi.org/10.5194/acp-10-1287-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., A. Teller, E. Ganor, and Y. Yin, 2005: On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. J. Geophys. Res., 110, D20202, https://doi.org/10.1029/2005JD005810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. H. Weisberg, 2011: A review of self-organizing map applications in meteorology and oceanography. Self Organizing Maps—Applications and Novel Algorithm Design, InTech, 253272.

    • Search Google Scholar
    • Export Citation
  • Lovett, R. F., 1978: Quantitative measurement of airborne sea-salt in the North Atlantic. Tellus, 30, 358364, https://doi.org/10.3402/tellusa.v30i4.10354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., and J. H. Seinfeld, 2006: Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing. J. Geophys. Res., 111, D02207, https://doi.org/10.1029/2005JD006419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, Z., and Coauthors, 2018: Biomass smoke from southern Africa can significantly enhance the brightness of stratocumulus over the southeastern Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 115, 29242929, https://doi.org/10.1073/pnas.1713703115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and M. D. Albright, 1987: Coastal southerlies and alongshore surges of the West Coast of North America: Evidence of mesoscale topographically trapped response to synoptic forcing. Mon. Wea. Rev., 115, 17071738, https://doi.org/10.1175/1520-0493(1987)115<1707:CSAASO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and N. A. Bond, 1996: Coastally trapped wind reversals along the United States West Coast during the warm season. Part II: Synoptic evolution. Mon. Wea. Rev., 124, 446461, https://doi.org/10.1175/1520-0493(1996)124<0446:CTWRAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melton, C., L. Washburn, and C. Gotschalk, 2009: Wind relaxations and poleward flow events in a coastal upwelling system on the central California coast. J. Geophys. Res., 114, C11016, https://doi.org/10.1029/2009JC005397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D. J., Z. Zhang, A. S. Ackerman, S. Platnick, and B. A. Baum, 2016: The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds. J. Geophys. Res. Atmos., 121, 41224141, https://doi.org/10.1002/2015JD024322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. D., and Coauthors, 2013: Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens ., 5, 67176766, https://doi.org/10.3390/rs5126717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1992: Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31, 317339, https://doi.org/10.1175/1520-0450(1992)031<0317:SCPDFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngo, M. A., and Coauthors, 2010: Airborne particles in the San Joaquin Valley may affect human health. Calif. Agric., 64, 1216, https://doi.org/10.3733/ca.v064n01p12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., and Coauthors, 2000: Coastally trapped wind reversals: Progress toward understanding. Bull. Amer. Meteor. Soc., 81, 719743, https://doi.org/10.1175/1520-0477(2000)081<0719:CTWRPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, and L. O’Neill, 2013: The diurnal cycle of cloud-top height and cloud cover over the southeastern Pacific as observed by GOES-10. J. Atmos. Sci., 70, 23932408, https://doi.org/10.1175/JAS-D-12-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: The prospect for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793, https://doi.org/10.1002/qj.49712051802.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2000: Forcing of the summertime low-level jet along the California coast. J. Appl. Meteor., 39, 24212433, https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., D. A. Rahn, and D. Leon, 2008: Aircraft observations of a coastally trapped wind reversal off the California coast. Mon. Wea. Rev., 136, 644663, https://doi.org/10.1175/2007MWR2199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, J. R., and P. J. Adams, 2006: Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res., 111, D06203, https://doi.org/10.1029/2005JD006186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105, 22 91922 935, https://doi.org/10.1029/2000JD900333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahn, D. A., and T. R. Parish, 2008: A study of the forcing of the 22–25 June 2006 coastally trapped wind reversal based on numerical simulations and aircraft observations. Mon. Wea. Rev., 136, 46874708, https://doi.org/10.1175/2008MWR2361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., L. Armi, J. M. Bane, C. Dorman, W. D. Neff, P. J. Neiman, W. Nuss, and P. O. Persson, 1998: Observations and analysis of the 10–11 June 1994 coastally trapped disturbance. Mon. Wea. Rev., 126, 24352465, https://doi.org/10.1175/1520-0493(1998)126<2435:OAAOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., L., P. J. Neiman, J. M. Wilczak, P. O. Persson, J. M. Bane, M. L. Cancillo, and W. Nuss, 2000: Kelvin waves and internal bores in the marine boundary layer inversion and their relationship to coastally trapped wind reversals. Mon. Wea. Rev., 128, 283300, https://doi.org/10.1175/1520-0493(2000)128<0283:KWAIBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., J. A. Coakley, D. H. Lenschow, C. W. Fairall, and R. A. Kropfli, 1984: Outlook for research on subtropical marine stratification clouds. Bull. Amer. Meteor. Soc., 65, 12901301, https://doi.org/10.1175/1520-0477(1984)065<1290:OFROSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rausch, J., K. Meyer, R. Bennartz, and S. Platnick, 2017: Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS collections 5.1 and 6 over global oceans. Atmos. Meas. Tech., 10, 21052116, https://doi.org/10.5194/amt-10-2105-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and M. R. Jury, 1990: On the generation and propagation of the southern African coastal low. Quart. J. Roy. Meteor. Soc., 116, 11331151, https://doi.org/10.1002/qj.49711649507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., K. J. Tory, and P. L. Jackson, 1999: Evolution of a southeast Australian coastally trapped disturbance. Meteor. Atmos. Phys., 70, 141165, https://doi.org/10.1007/s007030050031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, H. J., and L. M. Leslie, 1999: Modeling coastally trapped wind surges over southeastern Australia. Part I: Timing and speed of propagation. Wea. Forecasting, 14, 5366, https://doi.org/10.1175/1520-0434(1999)014<0053:MCTWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaman, C. J., and S. D. Miller, 2015: A dynamic scaling algorithm for the optimized digital display of VIIRS Day/Night Band imagery. Int. J. Remote Sens., 36, 18391854, https://doi.org/10.1080/01431161.2015.1029100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., R. Rotunno, and J. B. Klemp, 1999: Models of coastally trapped disturbances. J. Atmos. Sci., 56, 33493365, https://doi.org/10.1175/1520-0469(1999)056<3349:MOCTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., S. D. Burke, and J. Lewis, 2005: Fog and low clouds in a coastally trapped disturbance. J. Geophys. Res., 110, D18213, https://doi.org/10.1029/2004JD005522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., P. A. Durkee, B. J. Huebert, and R. J. Charlson, 1995: Effects of aerosol particles on the microphysics of coastal stratiform clouds. J. Climate, 8, 773783, https://doi.org/10.1175/1520-0442(1995)008<0773:EOAPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, D08203, https://doi.org/10.1029/2004JD005116.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., B. Stevens, G. Vali, and D. H. Lenschow, 2005: Observations of drizzle in nocturnal marine stratocumulus. J. Atmos. Sci., 62, 88106, https://doi.org/10.1175/JAS-3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villa, T. F., F. Gonzalez, B. Miljievi, Z. D. Ristovski, and L. Morawska, 2016: An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors, 16, 1072, https://doi.org/10.3390/s16071072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn ., 27, 1738, https://doi.org/10.1007/s00382-006-0111-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, https://doi.org/10.1002/2015GL064924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winant, C. D., R. C. Beardsley, and R. E. Davis, 1987: Moored wind, temperature, and current observations made during Coastal Ocean Dynamics Experiments 1 and 2 over the Northern California Continental Shelf and upper slope. J. Geophys. Res., 92, 15691604, https://doi.org/10.1029/JC092iC02p01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R. and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, https://doi.org/10.1175/JCLI3702.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zemba, J., and C. A. Friehe, 1987: The marine boundary layer jet in the Coastal Ocean Dynamics Experiment. J. Geophys. Res., 92, 14891496, https://doi.org/10.1029/JC092iC02p01489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and J. Li, 2013: Shortwave cloud radiative forcing on major stratus cloud regions in AMIP-type simulations of CMIP3 and CMIP5 models. Adv. Atmos. Sci., 30, 884907, https://doi.org/10.1007/s00376-013-2153-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 632 360 10
PDF Downloads 240 85 6