Modeling of Cloud Microphysics: Can We Do Better?

Wojciech W. Grabowski Mesoscale and Microscale Meteorology Laboratory, NCAR, Boulder, Colorado

Search for other papers by Wojciech W. Grabowski in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison Mesoscale and Microscale Meteorology Laboratory, NCAR, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
Shin-Ichiro Shima University of Hyogo, and RIKEN Center for Computational Science, Kobe, Japan

Search for other papers by Shin-Ichiro Shima in
Current site
Google Scholar
PubMed
Close
,
Gustavo C. Abade Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Gustavo C. Abade in
Current site
Google Scholar
PubMed
Close
,
Piotr Dziekan Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Piotr Dziekan in
Current site
Google Scholar
PubMed
Close
, and
Hanna Pawlowska Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Search for other papers by Hanna Pawlowska in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Representation of cloud microphysics is a key aspect of simulating clouds. From the early days of cloud modeling, numerical models have relied on an Eulerian approach for all cloud and thermodynamic and microphysics variables. Over time the sophistication of microphysics schemes has steadily increased, from simple representations of bulk masses of cloud and rain in each grid cell, to including different ice particle types and bulk hydrometeor concentrations, to complex schemes referred to as bin or spectral schemes that explicitly evolve the hydrometeor size distributions within each model grid cell. As computational resources grow, there is a clear trend toward wider use of bin schemes, including their use as benchmarks to develop and test simplified bulk schemes. We argue that continuing on this path brings fundamental challenges difficult to overcome. The Lagrangian particle-based probabilistic approach is a practical alternative in which the myriad of cloud and precipitation particles present in a natural cloud is represented by a judiciously selected ensemble of point particles called superdroplets or superparticles. The advantages of the Lagrangian particle-based approach when compared to the Eulerian bin methodology are explained, and the prospects of applying the method to more comprehensive cloud simulations—for instance, targeting deep convection or frontal cloud systems—are discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Wojciech W. Grabowski, grabow@ucar.edu

Abstract

Representation of cloud microphysics is a key aspect of simulating clouds. From the early days of cloud modeling, numerical models have relied on an Eulerian approach for all cloud and thermodynamic and microphysics variables. Over time the sophistication of microphysics schemes has steadily increased, from simple representations of bulk masses of cloud and rain in each grid cell, to including different ice particle types and bulk hydrometeor concentrations, to complex schemes referred to as bin or spectral schemes that explicitly evolve the hydrometeor size distributions within each model grid cell. As computational resources grow, there is a clear trend toward wider use of bin schemes, including their use as benchmarks to develop and test simplified bulk schemes. We argue that continuing on this path brings fundamental challenges difficult to overcome. The Lagrangian particle-based probabilistic approach is a practical alternative in which the myriad of cloud and precipitation particles present in a natural cloud is represented by a judiciously selected ensemble of point particles called superdroplets or superparticles. The advantages of the Lagrangian particle-based approach when compared to the Eulerian bin methodology are explained, and the prospects of applying the method to more comprehensive cloud simulations—for instance, targeting deep convection or frontal cloud systems—are discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Wojciech W. Grabowski, grabow@ucar.edu
Save
  • Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., J. M. Reisner, B. Henson, M. K. Dubey, and C. A. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrejczuk, M., W. W. Grabowski, J. Reisner, and A. Gadian, 2010: Cloud-aerosol interactions for boundary-layer stratocumulus in the Lagrangian Cloud Model. J. Geophys. Res., 115, D22214, https://doi.org/10.1029/2010JD014248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arabas, S., and S. Shima, 2013: Large-eddy simulations of trade-wind cumuli using particle-based microphysics with Monte Carlo coalescence. J. Atmos. Sci., 70, 27682777, https://doi.org/10.1175/JAS-D-12-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bayewitz, M. H., J. Yerushalmi, S. Katz, and R. Shinnar, 1974: The extent of correlations in a stochastic coalescence process. J. Atmos. Sci., 31, 16041614, https://doi.org/10.1175/1520-0469(1974)031<1604:TEOCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24, 688701, https://doi.org/10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974a: An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 18141824, https://doi.org/10.1175/1520-0469(1974)031<1814:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974b: An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 18251831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, E. X., and R. L. Reinhardt, 1974c: An analysis of cloud drop growth by collection: Part III. Accretion and self-collection. J. Atmos. Sci., 31, 21182126, https://doi.org/10.1175/1520-0469(1974)031<2118:AAOCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1970: A fast, approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 51655171, https://doi.org/10.1029/JC075i027p05165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261268, https://doi.org/10.1038/ngeo2398.

  • Brdar, S., and A. Seifert, 2018: McSnow: A Monte-Carlo particle model for riming and aggregation of ice particles in a multidimensional microphysical phase space. J. Adv. Model. Earth Syst., 10, 187206, https://doi.org/10.1002/2017MS001167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093, https://doi.org/10.1256/003590002320373210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carpenter, R. L., K. K. Droegemeier, and A. M. Blyth, 1998: Entrainment and detrainment in numerically simulated cumulus congestus clouds. Part I: General results. J. Atmos. Sci., 55, 34173432, https://doi.org/10.1175/1520-0469(1998)055<3417:EADINS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1973: Numerical modeling of the dynamics and microphysics of warm cumulus convection. J. Atmos. Sci., 30, 857878, https://doi.org/10.1175/1520-0469(1973)030<0857:NMOTDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., 1979: Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multicellular severe storm simulations. J. Atmos. Sci., 36, 21912215, https://doi.org/10.1175/1520-0469(1979)036<2191:NSWATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., and H. Pawlowska, 2017: Stochastic coalescence in Lagrangian cloud microphysics. Atmos. Chem. Phys., 17, 13 50913 520, https://doi.org/10.5194/acp-17-13509-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dziekan, P., M. Waruszewski, and H. Pawlowska, 2019: University of Warsaw Lagrangian Cloud Model (UWLCM) 1.0: A modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics, Geosci. Model Dev. Discuss ., https://doi.org/10.5194/gmd-2018-281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., and W. Wobrock, 2010: A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modelling. Atmos. Res., 97, 478497, https://doi.org/10.1016/j.atmosres.2010.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillespie, D. T., 1972: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci., 29, 14961510, https://doi.org/10.1175/1520-0469(1972)029<1496:TSCMFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 58, 978997, https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and T. L. Clark, 1993: Cloud–environment interface instability. Part II: Extension to three spatial dimensions. J. Atmos. Sci., 50, 555573, https://doi.org/10.1175/1520-0469(1993)050<0555:CEIIPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178, https://doi.org/10.1016/S0167-2789(99)00104-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and L.-P. Wang, 2013: Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech., 45, 293324, https://doi.org/10.1146/annurev-fluid-011212-140750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., T. Yamaguchi, and G. Feingold, 2019: Inhomogeneous mixing in Lagrangian cloud models: Effects on the production of precipitation embryos. J. Atmos. Sci., 76, 113133, https://doi.org/10.1175/JAS-D-18-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoppel, W. A., G. M. Frick, and R. E. Larson, 1986: Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer. Geophys. Res. Lett., 13, 125128, https://doi.org/10.1029/GL013i002p00125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoppel, W. A., G. M. Frick, J. W. Fitzgerald, and R. E. Larson, 1994: Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution. J. Geophys. Res., 99, 14 44314 459, https://doi.org/10.1029/94JD00797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaruga, A., and H. Pawlowska, 2018: libcloudph++ 1.1: Aqueous phase chemistry extension of the Lagrangian cloud microphysics scheme. Geosci. Model Dev., 11, 36233645, https://doi.org/10.5194/gmd-11-3623-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, https://doi.org/10.1175/JAS-D-14-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and A. D. Nugent, 2017: Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci., 74, 679697, https://doi.org/10.1175/JAS-D-15-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Cloud Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 88 pp.

    • Crossref
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovksy, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1, 15, https://doi.org/10.3894/JAMES.2009.1.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 11601189, https://doi.org/10.1175/1520-0469(1991)048<1160:TSOACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, Y. L., 2013: A cumulus cloud microphysics parameterization for cloud-resolving models. J. Atmos. Sci., 70, 14231436, https://doi.org/10.1175/JAS-D-12-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostinski, A. B., and R. A. Shaw, 2005: Fluctuations and luck in droplet growth by coalescence. Bull. Amer. Meteor. Soc., 86, 23524, https://doi.org/10.1175/BAMS-86-2-235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697, https://doi.org/10.1175/2008JAS2864.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S. G., W. A. Cooper, and A. M. Blyth, 2005: Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud. Quart. J. Roy. Meteor. Soc., 131, 195220, https://doi.org/10.1256/qj.03.199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, https://doi.org/10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X.-Y., A. Brandenburg, N. E. L. Haugen, and G. Svensson, 2017: Eulerian and Lagrangian approaches to multidimensional condensation and collection. J. Adv. Model. Earth Syst., 9, 11161137, https://doi.org/10.1002/2017MS000930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39, 21922210, https://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 12831298, https://doi.org/10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., Y. L. Kogan, D. K. Lilly, and M. P. Khairoutdinov, 1997: Variational optimization method for calculation of cloud drop growth in an Eulerian drop-size framework. J. Atmos. Sci., 54, 24932504, https://doi.org/10.1175/1520-0469(1997)054<2493:VOMFCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975995, https://doi.org/10.1175/JAS-D-15-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, https://doi.org/10.1175/2007JAS2491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2010: An improved representation of rimed snow and conversion to graupel in a new multicomponent bin microphysics scheme. J. Atmos. Sci., 67, 13371360, https://doi.org/10.1175/2010JAS3250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, https://doi.org/10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, F. W., 1970: Numerical models of a tropical cumulus cloud with bilateral and axial symmetry. Mon. Wea. Rev., 98, 1428, https://doi.org/10.1175/1520-0493(1970)098<0014:NMOATC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. J. Atmos. Sci., 20, 407424, https://doi.org/10.1175/1520-0469(1963)020<0407:TEOAMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, H. D., 1965: A numerical study of the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci., 22, 684699, https://doi.org/10.1175/1520-0469(1965)022<0684:ANSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740, https://doi.org/10.1175/2008JAS2734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud-parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, https://doi.org/10.1175/BAMS-84-11-1547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R., and Coauthors, 2007: Rain in (shallow) cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 19121928, https://doi.org/10.1175/BAMS-88-12-1912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497519, https://doi.org/10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/10.1103/PhysRevLett.115.184501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., and Coauthors, 2014: The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1, 18, https://doi.org/10.1186/s40645-014-0018-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1973: A numerical model of deep moist convection: Part I. Comparative experiments for variable ambient moisture and wind shear. J. Atmos. Sci., 30, 835856, https://doi.org/10.1175/1520-0469(1973)030<0835:ANMODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32, 934957, https://doi.org/10.1175/1520-0469(1975)032<0934:ATDNMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwenkel, J., F. Hoffmann, and S. Raasch, 2018: Improving collisional growth in Lagrangian cloud models: Development and verification of a new splitting algorithm. Geosci. Model Dev., 11, 39293944, https://doi.org/10.5194/gmd-11-3929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shima, S.-I., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The superdroplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smoluchowski, M. V., 1916: Drei vortrage uber diffusion, Brownsche bewegung und koagulation von kolloidteilchen. Phys. Z., 17, 557585.

    • Search Google Scholar
    • Export Citation
  • Sölch, I., and B. Kärcher, 2010: A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Quart. J. Roy. Meteor. Soc., 136, 20742093, https://doi.org/10.1002/qj.689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., R. J. Hogan, P. A. Clark, C. E. Halliwell, K. E. Hanley, H. W. Lean, J. C. Nicol, and R. S. Plant, 2015: The DYMECS Project: A statistical approach for the evaluation of convective storms in high-resolution NWP models. Bull. Amer. Meteor. Soc., 96, 939951, https://doi.org/10.1175/BAMS-D-13-00279.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and A. Seifert, 2008: Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteor. Soc. Japan, 86A, 143162, https://doi.org/10.2151/jmsj.86A.143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 9801006, https://doi.org/10.1175/1520-0469(1996)053<0980:EOTMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapp, M. C., and P. W. White, 1976: A non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc., 102, 277296, https://doi.org/10.1002/qj.49710243202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telford, J. W., 1955: A new aspect of coalescence theory. J. Meteor., 12, 436444, https://doi.org/10.1175/1520-0469(1955)012<0436:ANAOCT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149, https://doi.org/10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of rain-drop spectra. Part II: Collisional collection/breakup and evaporation in a rain shaft. J. Atmos. Sci., 46, 33123327, https://doi.org/10.1175/1520-0469(1989)046<3312:TEORSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., and I. Sölch, 2010: Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model. Atmos. Chem. Phys., 10, 10 00310 015, https://doi.org/10.5194/acp-10-10003-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., and I. Sölch, 2014: Optimisation of simulation particle number in a Lagrangian ice microphysical model. Geosci. Model Dev., 7, 695709, https://doi.org/10.5194/gmd-7-695-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterstrasser, S., F. Hoffmann, and M. Lerch, 2017: Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations. Geosci. Model Dev., 10, 15211548, https://doi.org/10.5194/gmd-10-1521-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, P. A., M. K. Yau, P. Bartello, and W. W. Grabowski, 2002: Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 34213435, https://doi.org/10.1175/1520-0469(2002)059<3421:MATCDG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407436, https://doi.org/10.1175/2007WAF2007005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, M., 2016: Large deviation analysis of rapid onset of rain showers. Phys. Rev. Lett., 116, 018501, https://doi.org/10.1103/PhysRevLett.116.018501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes. Part I: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3646 899 72
PDF Downloads 3419 784 53