A Stochastic Representation of Subgrid Uncertainty for Dynamical Core Development

Aneesh Subramanian University of Colorado Boulder, Boulder, Colorado, and Department of Physics, University of Oxford, Oxford, United Kingdom, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Aneesh Subramanian in
Current site
Google Scholar
PubMed
Close
,
Stephan Juricke Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Stephan Juricke in
Current site
Google Scholar
PubMed
Close
,
Peter Dueben Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Peter Dueben in
Current site
Google Scholar
PubMed
Close
, and
Tim Palmer Department of Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Tim Palmer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerical weather prediction and climate models comprise a) a dynamical core describing resolved parts of the climate system and b) parameterizations describing unresolved components. Development of new subgrid-scale parameterizations is particularly uncertain compared to representing resolved scales in the dynamical core. This uncertainty is currently represented by stochastic approaches in several operational weather models, which will inevitably percolate into the dynamical core. Hence, implementing dynamical cores with excessive numerical accuracy will not bring forecast gains, may even hinder them since valuable computer resources will be tied up doing insignificant computation, and therefore cannot be deployed for more useful gains, such as increasing model resolution or ensemble sizes. Here we describe a low-cost stochastic scheme that can be implemented in any existing deterministic dynamical core as an additive noise term. This scheme could be used to adjust accuracy in future dynamical core development work. We propose that such an additive stochastic noise test case should become a part of the routine testing and development of dynamical cores in a stochastic framework. The overall key point of the study is that we should not develop dynamical cores that are more precise than the level of uncertainty provided by our stochastic scheme. In this way, we present a new paradigm for dynamical core development work, ensuring that weather and climate models become more computationally efficient. We show some results based on tests done with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) dynamical core.

CURRENT AFFILIATIONS: Juricke—Jacobs University Bremen, Bremen, and Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Dueben—ECMWF, Reading, United Kingdom

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Aneesh Subramanian, aneeshcs@colorado.edu

Abstract

Numerical weather prediction and climate models comprise a) a dynamical core describing resolved parts of the climate system and b) parameterizations describing unresolved components. Development of new subgrid-scale parameterizations is particularly uncertain compared to representing resolved scales in the dynamical core. This uncertainty is currently represented by stochastic approaches in several operational weather models, which will inevitably percolate into the dynamical core. Hence, implementing dynamical cores with excessive numerical accuracy will not bring forecast gains, may even hinder them since valuable computer resources will be tied up doing insignificant computation, and therefore cannot be deployed for more useful gains, such as increasing model resolution or ensemble sizes. Here we describe a low-cost stochastic scheme that can be implemented in any existing deterministic dynamical core as an additive noise term. This scheme could be used to adjust accuracy in future dynamical core development work. We propose that such an additive stochastic noise test case should become a part of the routine testing and development of dynamical cores in a stochastic framework. The overall key point of the study is that we should not develop dynamical cores that are more precise than the level of uncertainty provided by our stochastic scheme. In this way, we present a new paradigm for dynamical core development work, ensuring that weather and climate models become more computationally efficient. We show some results based on tests done with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) dynamical core.

CURRENT AFFILIATIONS: Juricke—Jacobs University Bremen, Bremen, and Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Dueben—ECMWF, Reading, United Kingdom

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Aneesh Subramanian, aneeshcs@colorado.edu
Save
  • Arakawa, A., and C. Wu, 2013: A unified representation of deep moist convection in numerical modeling of the atmosphere. Part I. J. Atmos. Sci., 70, 19771992, https://doi.org/10.1175/JAS-D-12-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66, 603626, https://doi.org/10.1175/2008JAS2677.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, J., K. R. Smith, S. Y. Ha, J. P. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Model-error representations versus calibration and debiasing. Mon. Wea. Rev., 143, 12951320, https://doi.org/10.1175/MWR-D-14-00091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chantry, M., T. Thornes, T. N. Palmer, and P. Düben, 2018: Scale-selective precision for weather and climate forecasting. Mon. Wea. Rev., 147, 645655, https://doi.org/10.1175/MWR-D-18-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, H., J. Berner, D. R. B. Coleman, and T. N. Palmer, 2017: Stochastic parameterization and El Niño–Southern Oscillation. J. Climate, 30, 1738, https://doi.org/10.1175/JCLI-D-16-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 19962004, https://doi.org/10.1175/JAS3709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and Coauthors, 2017: Climate SPHINX: Evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model. Geosci. Model Dev., 10, 13831402, https://doi.org/10.5194/gmd-10-1383-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quart. J. Royal Meteor. Soc., 135, 15381559, https://doi.org/10.1002/qj.464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Düben, P., and T. Palmer, 2014: Benchmark tests for numerical weather forecasts on inexact hardware. Mon. Wea. Rev., 142, 38093829, https://doi.org/10.1175/MWR-D-14-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Düben, P., F. Russell, X. Niu, W. Luk, and T. Palmer, 2015: On the use of programmable hardware and reduced numerical precision in earth-system modeling. J. Adv. Model. Earth Syst., 7, 13931408, https://doi.org/10.1002/2015MS000494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gross, M., S. Malardel, C. Jablonowski, and N. Wood, 2016: Bridging the (knowledge) gap between physics and dynamics. Bull. Amer. Meteor. Soc., 97, 137142, https://doi.org/10.1175/BAMS-D-15-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gross, M., and Coauthors, 2018: Physics–dynamics coupling in weather, climate, and earth system models: Challenges and recent progress. Mon. Wea. Rev., 146, 35053544, https://doi.org/10.1175/MWR-D-17-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432975, https://doi.org/10.1256/qj.06.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2011: The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. Numerical Techniques for Global Atmospheric Models, Springer, 381493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair, 2010: Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst., 2, 15, https://doi.org/10.3894/JAMES.2010.2.15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., C. Jablonowski, M. A. Taylor, and R. D. Nair, Eds., 2011: Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, Vol. 80, Springer, 564 pp.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 23152339, https://doi.org/10.1002/qj.3094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climatic predictability. The physical basis of climate and climate modelling: Report of the International Study Conference in Stockholm, GARP Publ. Series 16, WMO, 132–136, https://library.wmo.int/pmb_ged/garp-ps_16.pdf.

  • Malardel, S., and N. P. Wedi, 2016: How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos., 121, 53955410, https://doi.org/10.1002/2015JD023970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakano, M., H. Yashiro, C. Kodama, and H. Tomita, 2018: Single precision in the dynamical core of a nonhydrostatic global atmospheric model: Evaluation using a baroclinic wave test case. Mon. Wea. Rev., 146, 409416, https://doi.org/10.1175/MWR-D-17-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279304, https://doi.org/10.1002/qj.49712757202.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2012: Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Quart. J. Roy. Meteor. Soc., 138, 841861, https://doi.org/10.1002/qj.1923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. Molteni, R. Mureau, R. Buizza, P. Chapelet, and J. Tribbia, 1993: Ensemble prediction. Proc. ECMWF Seminar on Validation of Models over Europe ,Vol. 1, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 2166.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2008: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470, https://doi.org/10.1175/BAMS-89-4-459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009a: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., https://doi.org/10.21957/ps8gbwbdv.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell, 2009b: Reply. Bull. Amer. Meteor. Soc., 90, 15511554, https://doi.org/10.1175/2009BAMS2916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pitcher, E. J., 1977: Application of stochastic dynamic prediction to real data. J. Atmos. Sci., 34, 321, https://doi.org/10.1175/1520-0469(1977)034<0003:AOSDPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and J.-I. Yano, Eds., 2015: Parameterization of Atmospheric Convection, World Scientific, 1172 pp.

  • Poincaré, H., 1905: Science and Hypothesis. Science Press, 244 pp.

  • Sanchez, C., K. D. Williams, and M. Collins, 2016: Improved stochastic physics schemes for global weather and climate models. Quart. J. Roy. Meteor. Soc., 142, 147159, https://doi.org/10.1002/qj.2640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and T. N. Palmer, 2007: Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem. J. Climate, 20, 187202, https://doi.org/10.1175/JCLI3954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and A. C. Pallarès, 2014: Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction models. Philos. Trans. Roy. Soc. London, 372A, 2013 0284, https://doi.org/10.1098/rsta.2013.0284.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., Ed., 2013: The Physics and Parameterization of Moist Atmospheric Convection. Nato Science Series, Vol. 505, Springer, 498 pp.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406, https://doi.org/10.1038/nature03301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Thuburn, 2012: Horizontal grids for global weather and climate prediction models: A review. Quart. J. Roy. Meteor. Soc., 138, 126, https://doi.org/10.1002/qj.958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn ., 37, 455471, https://doi.org/10.1007/s00382-010-0947-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sušelj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, https://doi.org/10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sušelj, K., T. F. Hogan, and J. Teixeira, 2014: Implementation of a stochastic eddy-diffusivity/mass-flux parameterization into the Navy Global Environmental Model. Wea. Forecasting, 29, 13741390, https://doi.org/10.1175/WAF-D-14-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483496, https://doi.org/10.1175/2007MWR1870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, et al., Eds., Cambridge University Press, 235336.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and Coauthors, 2017: DCMIP2016: A review of non-hydrostatic dynamical core design and intercomparison of participating models. Geosci. Model Dev., 10, 44774509, https://doi.org/10.5194/gmd-10-4477-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Váňa, F., P. Düben, S. Lang, T. Palmer, M. Leutbecher, D. Salmond, and G. Carver, 2017: Single precision in weather forecasting models: An evaluation with the IFS. Mon. Wea. Rev., 145, 495502, https://doi.org/10.1175/MWR-D-16-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, P. A. G., J. Berner, S. Corti, P. Davini, J. von Hardenberg, C. Sanchez, A. Weisheimer, and T. N. Palmer, 2017: The impact of stochastic physics on tropical rainfall variability in global climate models on daily to weekly time scales. J. Geophys. Res. Atmos., 122, 57385762, https://doi.org/10.1002/2016JD026386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and T. N. Palmer, 2014: On the reliability of seasonal climate forecasts. J. Roy. Soc. Interface, 11, 2013 1162, https://doi.org/10.1098/rsif.2013.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., S. Corti, and T. Palmer, 2014: Addressing model error through atmospheric stochastic physical parametrizations: Impact on the coupled ECMWF seasonal forecasting system. Philos. Trans. Roy. Soc. London, 372A, 20130290, https://doi.org/10.1098/rsta.2013.0290.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85, 241269, https://doi.org/10.2151/jmsj.85B.241.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 846 264 17
PDF Downloads 402 91 11