Seawater Icicles of the Adriatic Sea

Vlado Malačič National Institute of Biology, Marine Biology Station, Piran, Slovenia

Search for other papers by Vlado Malačič in
Current site
Google Scholar
PubMed
Close
and
Nedjeljka Žagar Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Search for other papers by Nedjeljka Žagar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The marine icicles that form on coastal constructions (e.g., piers and railings) are very common in polar and subpolar areas. The occasional formation of icicles in the coastal zones of the Mediterranean Sea occurs in relation to cold-air outbreaks from the polar region, such as the one presented in this paper in February 2018. The air temperatures over the northern Adriatic Sea, the northernmost part of the Mediterranean, dropped below –2.1°C, a necessary condition for seawater to freeze, with salinity between 38.0 and 38.5 PSU. The formation of icicles on the coastal structures was further enabled by the bora wind and related high seas along the coast. Measurements presented in this paper confirm that the icicles in the Bay of Piran in the Gulf of Trieste (45.55°N) were formed from the seawater. The measured salinity level of the melted icicles, around 9 PSU, is a typical value reported for marine icicles in polar regions.

CURRENT AFFILIATION: Žagar—Meteorologisches Institut, Universität Hamburg, Hamburg, Germany

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Vlado Malačič, vlado.malacic@nib.si

Abstract

The marine icicles that form on coastal constructions (e.g., piers and railings) are very common in polar and subpolar areas. The occasional formation of icicles in the coastal zones of the Mediterranean Sea occurs in relation to cold-air outbreaks from the polar region, such as the one presented in this paper in February 2018. The air temperatures over the northern Adriatic Sea, the northernmost part of the Mediterranean, dropped below –2.1°C, a necessary condition for seawater to freeze, with salinity between 38.0 and 38.5 PSU. The formation of icicles on the coastal structures was further enabled by the bora wind and related high seas along the coast. Measurements presented in this paper confirm that the icicles in the Bay of Piran in the Gulf of Trieste (45.55°N) were formed from the seawater. The measured salinity level of the melted icicles, around 9 PSU, is a typical value reported for marine icicles in polar regions.

CURRENT AFFILIATION: Žagar—Meteorologisches Institut, Universität Hamburg, Hamburg, Germany

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Vlado Malačič, vlado.malacic@nib.si
Save
  • Artegiani, A., D. Bregant, E. Paschini, N. Pinardi, F. Raicich, and A. Russo, 1997a: The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr., 27, 14921514, https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Artegiani, A., D. Bregant, E. Paschini, N. Pinardi, F. Raicich, and A. Russo, 1997b: The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr., 27, 15151532, https://doi.org/10.1175/1520-0485(1997)027<1515:TASGCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belušić, D., M. Hrastinski, Ž. Večenaj, and B. Grisogono, 2013: Wind regimes associated with a mountain gap at the northeastern Adriatic coast. J. Appl. Meteor. Climatol., 52, 20892105, https://doi.org/10.1175/JAMC-D-12-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carniel, S., A. Benetazzo, D. Bonaldo, F. M. Falcieri, M. M. Miglietta, A. Ricchi, and M. Sclavo, 2016: Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Modell., 101 ,101112, https://doi.org/10.1016/j.ocemod.2016.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, G. F. N., and W. F. Weeks, 1974: Salinity variations in sea ice. J. Glaciol., 13, 109120, https://doi.org/10.1017/S0022143000023418.

  • Ehn, J. K., B. J. Hwang, R. Galley, and D. G. Barber, 2007: Investigations of newly formed sea ice in the Cape Bathurst polynya: 1. Structural, physical, and optical properties. J. Geophys. Res. ,112, C05002, https://doi.org/10.1029/2006JC003702.

    • Search Google Scholar
    • Export Citation
  • Falcieri, F. M., and Coauthors, 2016: Turbulence observations in the Gulf of Trieste under moderate wind forcing and different water column stratification. Ocean Sci., 12 ,433449, https://doi.org/10.5194/os-12-433-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohm, A., G. J. Mayr, A. Fix, and A. Giez, 2008: On the onset of bora and the formation of rotors and jumps near a mountain gap. Quart. J. Roy. Meteor. Soc., 134, 2146, https://doi.org/10.1002/qj.206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisogono, B., and D. Belušić, 2009: A review of recent advances in understanding the meso- and microscale properties of the severe bora wind. Tellus, 61A, 116, https://doi.org/10.1111/j.1600-0870.2008.00369.x.

    • Search Google Scholar
    • Export Citation
  • Grubišíć, V., 2004: Bora-driven potential vorticity banners over the Adriatic. Quart. J. Roy. Meteor. Soc. ,130, 25712603, https://doi.org/10.1256/qj.03.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malačič, V., M. Celio, B. Čermelj, A. Bussani, and C. Comici, 2006: Interannual evolution of seasonal thermohaline properties in the Gulf of Trieste (northern Adriatic) 1991–2003. J. Geophys. Res., 111, C08009, https://doi.org/10.1029/2005JC003267.

    • Search Google Scholar
    • Export Citation
  • Manca, B., M. Burca, A. Giorgetti, C. Coatanoan, M. J. Garcia, and A. Iona, 2004: Physical and biochemical averaged vertical profiles in the Mediterranean regions: An important tool to trace the climatology of water masses and to validate incoming data from operational oceanography. J. Mar. Syst., 48, 83116, https://doi.org/10.1016/j.jmarsys.2003.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mihanović, H., and Coauthors, 2013: Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci .,9 ,561572, https://doi.org/10.5194/os-9-561-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petkovšek, Z., 1987: Main bora gusts—A model explanation. Geofizika, 4, 4150.

  • Poulain, P.-M., V. Kourafalou, and B. Cushman-Roisin, 2001: Northern Adriatic Sea. Physical Oceanography of the Adriatic Sea, Past, Present and Future, B. Cushman-Roisin et al., Eds., Kluwer Academic Press, 143165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raicich, F., V. Malačič, M. Celio, D. Giaiotti, C. Cantoni, R. R. Colucci, B. Čermelj, and A. Pucillo, 2013: Extreme air–sea interactions in the Gulf of Trieste (north Adriatic) during the strong bora event in winter 2012. J. Geophys. Res. Oceans, 118, 52385250, https://doi.org/10.1002/jgrc.20398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricchi, A., M. M. Miglietta, P. P. Falco, A. Benetazzo, D. Bonaldo, A. Bergamasco, M. Sclavo, and S. Carniel, 2016: On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos. Res., 172–173, 4865, https://doi.org/10.1016/j.atmosres.2015.12.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Signell, R., J. Chiggiato, J. Horstmann, D. Doyle James, J. Pullen, and F. Askari, 2010: High-resolution mapping of bora winds in the northern Adriatic Sea using synthetic aperture radar. J. Geophys. Res. ,115, C04020, https://doi.org/10.1029/2009JC005524.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., J. D. Doyle, Q. Jiang, and S. A. Smith, 2007: Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Quart. J. Roy. Meteor. Soc. ,133, 917936, https://doi.org/10.1002/qj.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solidoro, C., and Coauthors, 2009: Current state, scales of variability, and trends of biogeochemical properties in the northern Adriatic Sea. J. Geophys. Res., 114, C07S91, https://doi.org/10.1029/2008JC004838.

    • Search Google Scholar
    • Export Citation
  • UNESCO, 1978: Ninth report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Papers in Marine Science, No. 30, 33 pp.

    • Search Google Scholar
    • Export Citation
  • UNESCO, 1983: Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Papers in Marine Science, No. 44, 53 pp.

  • UNESCO, 1987: International Oceanographic Tables. UNESCO Tech. Papers in Marine Science, No. 40, Vol. 4, 195 pp.

  • Vatova, A., 1929: Sui minimi termici verificatisi nell’ Alto Adriatico nel febbraio e marzo 1929 e loro effetti sull’ittiofauna. Mem. Roy. Com. Talassogr. Ital., 157, 19.

    • Search Google Scholar
    • Export Citation
  • Vatova, , A., 1934: L’anormale regime fisico-chimico dell’Alto Adriatico nel 1929 e le sue ripercussioni sulla fauna. Thalassia, 1, 149.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 690 256 20
PDF Downloads 482 125 11