A High-Altitude Long-Range Aircraft Configured as a Cloud Observatory: The NARVAL Expeditions

Bjorn Stevens Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
,
Felix Ament Universität Hamburg, Hamburg, Germany

Search for other papers by Felix Ament in
Current site
Google Scholar
PubMed
Close
,
Sandrine Bony Sorbonne University, LMD/IPSL, CNRS, Paris, France

Search for other papers by Sandrine Bony in
Current site
Google Scholar
PubMed
Close
,
Susanne Crewell University of Cologne, Cologne, Germany

Search for other papers by Susanne Crewell in
Current site
Google Scholar
PubMed
Close
,
Florian Ewald Institute for Physics of the Atmosphere, (DLR) Oberpfaffenhofen, Germany

Search for other papers by Florian Ewald in
Current site
Google Scholar
PubMed
Close
,
Silke Gross Institute for Physics of the Atmosphere, (DLR) Oberpfaffenhofen, Germany

Search for other papers by Silke Gross in
Current site
Google Scholar
PubMed
Close
,
Akio Hansen Universität Hamburg, Hamburg, Germany

Search for other papers by Akio Hansen in
Current site
Google Scholar
PubMed
Close
,
Lutz Hirsch Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Lutz Hirsch in
Current site
Google Scholar
PubMed
Close
,
Marek Jacob University of Cologne, Cologne, Germany

Search for other papers by Marek Jacob in
Current site
Google Scholar
PubMed
Close
,
Tobias Kölling Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Tobias Kölling in
Current site
Google Scholar
PubMed
Close
,
Heike Konow Universität Hamburg, Hamburg, Germany

Search for other papers by Heike Konow in
Current site
Google Scholar
PubMed
Close
,
Bernhard Mayer Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Bernhard Mayer in
Current site
Google Scholar
PubMed
Close
,
Manfred Wendisch University of Leipzig, Leipzig, Germany

Search for other papers by Manfred Wendisch in
Current site
Google Scholar
PubMed
Close
,
Martin Wirth Institute for Physics of the Atmosphere, (DLR) Oberpfaffenhofen, Germany

Search for other papers by Martin Wirth in
Current site
Google Scholar
PubMed
Close
,
Kevin Wolf University of Leipzig, Leipzig, Germany

Search for other papers by Kevin Wolf in
Current site
Google Scholar
PubMed
Close
,
Stephan Bakan Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Stephan Bakan in
Current site
Google Scholar
PubMed
Close
,
Matthias Bauer-Pfundstein Metek GmbH, Elmshorn, Germany

Search for other papers by Matthias Bauer-Pfundstein in
Current site
Google Scholar
PubMed
Close
,
Matthias Brueck Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Matthias Brueck in
Current site
Google Scholar
PubMed
Close
,
Julien Delanoë LATMOS/IPSL/UVSQ/CNRS, Guyancourt, and Sorbonne University, Paris, France

Search for other papers by Julien Delanoë in
Current site
Google Scholar
PubMed
Close
,
André Ehrlich University of Leipzig, Leipzig, Germany

Search for other papers by André Ehrlich in
Current site
Google Scholar
PubMed
Close
,
David Farrell Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados

Search for other papers by David Farrell in
Current site
Google Scholar
PubMed
Close
,
Marvin Forde Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados

Search for other papers by Marvin Forde in
Current site
Google Scholar
PubMed
Close
,
Felix Gödde Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Felix Gödde in
Current site
Google Scholar
PubMed
Close
,
Hans Grob Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Hans Grob in
Current site
Google Scholar
PubMed
Close
,
Martin Hagen Institute for Physics of the Atmosphere, (DLR) Oberpfaffenhofen, Germany

Search for other papers by Martin Hagen in
Current site
Google Scholar
PubMed
Close
,
Evelyn Jäkel University of Leipzig, Leipzig, Germany

Search for other papers by Evelyn Jäkel in
Current site
Google Scholar
PubMed
Close
,
Friedhelm Jansen Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Friedhelm Jansen in
Current site
Google Scholar
PubMed
Close
,
Christian Klepp Universität Hamburg, Hamburg, Germany

Search for other papers by Christian Klepp in
Current site
Google Scholar
PubMed
Close
,
Marcus Klingebiel Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Marcus Klingebiel in
Current site
Google Scholar
PubMed
Close
,
Mario Mech University of Cologne, Cologne, Germany

Search for other papers by Mario Mech in
Current site
Google Scholar
PubMed
Close
,
Gerhard Peters Metek GmbH, Elmshorn, Germany

Search for other papers by Gerhard Peters in
Current site
Google Scholar
PubMed
Close
,
Markus Rapp Institute for Physics of the Atmosphere, (DLR) Oberpfaffenhofen, Germany

Search for other papers by Markus Rapp in
Current site
Google Scholar
PubMed
Close
,
Allison A. Wing Florida State University, Tallahassee, Florida

Search for other papers by Allison A. Wing in
Current site
Google Scholar
PubMed
Close
, and
Tobias Zinner Ludwig-Maximilians University of Munich, Munich, Germany

Search for other papers by Tobias Zinner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Bjorn Stevens, bjorn.stevens@mpimet.mpg.de

Abstract

A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Bjorn Stevens, bjorn.stevens@mpimet.mpg.de
Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement program. Phys. Today, 56, 3844, https://doi.org/10.1063/1.1554135.

  • Anderson, J. B., 1931: Observations from airplanes of cloud and fog conditions along the Southern California coast. Mon. Wea. Rev., 59, 264270, https://doi.org/10.1175/1520-0493(1931)59<264:OFAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., and R. M. Mitchell, 1994: Absorption feedback in stratocumulus clouds: Influence on cloud top albedo. Tellus, 46A, 229241, https://doi.org/10.3402/tellusa.v46i3.15476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and B. Stevens, 2019: Measuring area-averaged vertical motions with dropsondes. J. Atmos. Sci., 76, 767783, https://doi.org/10.1175/JAS-D-18-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2017: EUREC4A: A field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys., 36, 7340, https://doi.org/10.1007/s10712-017-9428-0.

    • Search Google Scholar
    • Export Citation
  • Cooper, A., B. Johnson, E. Ragni, L. Summers, and N. Zrubek, 1989: Scientific justification and development plan for a mid-sized jet research aircraft. NCAR Tech. Note NCAR/TN-337+EDD, 70 pp., https://doi.org/10.5065/D62B8VZX.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113, D07204, https://doi.org/10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, https://doi.org/10.1002/2015MS000431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. W. O’Dell, M. D. Lebsock, R. Bennartz, T. J. Greenwald, and F. J. Wentz, 2017: The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). J. Climate, 30, 10 19310 210, https://doi.org/10.1175/JCLI-D-16-0902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewald, F., T. Kölling, A. Baumgartner, T. Zinner, and B. Mayer, 2016: Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager. Atmos. Meas. Tech., 9, 20152042, https://doi.org/10.5194/amt-9-2015-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewald, F., S. Gross, M. Hagen, L. Hirsch, J. Delanoë, and M. Bauer-Pfundstein, 2019: Calibration of a 35 GHz airborne cloud radar: Lessons learned and intercomparisons with 94 GHz cloud radars. Atmos. Meas. Tech., 12, 18151839, https://doi.org/10.5194/amt-12-1815-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., R. Bennartz, M. Lebsock, and J. Teixeira, 2018: An uncertainty data set for passive microwave satellite observations of warm cloud liquid water path. J. Geophys. Res. Atmos., 123, 36683687, https://doi.org/10.1002/2017JD027638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosvenor, D. P., and Coauthors, 2018: Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Rev. Geophys., 105, 68376845, https://doi.org/10.1029/2017RG000593.

    • Search Google Scholar
    • Export Citation
  • Heinze, R., and Coauthors, 2017: Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Quart. J. Roy. Meteor. Soc., 143, 69100, https://doi.org/10.1002/qj.2947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet. Bull. Amer. Meteor. Soc., 88, 883898, https://doi.org/10.1175/BAMS-88-6-883.

  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klepp, C., F. Ament, S. Bakan, L. Hirsch, and B. Stevens, 2015: NARVAL campaign report. Max Planck Institute for Meteorology Tech. Rep. 164, 218 pp.

    • Search Google Scholar
    • Export Citation
  • Klocke, D., M. Brueck, C. Hohenegger, and B. Stevens, 2017: Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic. Nat. Geosci., 10, 891896, https://doi.org/10.1038/s41561-017-0005-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, https://doi.org/10.1029/2007GL029253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laursen, K. K., D. P. Jorgensen, G. P. Brasseur, S. L. Ustin, and J. R. Huning, 2006: HIAPER: The next generation NSF/NCAR research aircraft. Bull. Amer. Meteor. Soc., 87, 896910, https://doi.org/10.1175/BAMS-87-7-896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonitz, K., B. Stevens, L. Nuijens, V. Sant, L. Hirsch, and A. Seifert, 2015: The signature of aerosols and meteorology in long-term cloud radar observations of trade wind cumuli. J. Atmos. Sci., 72, 46434659, https://doi.org/10.1175/JAS-D-14-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., C. Ronne, and M. Chaffe, 1961: Cloud patterns in Hurricane Daisy, 1958. Tellus, 13, 830, https://doi.org/10.3402/tellusa.v13i1.9439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. A. Houze, 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 18071828, https://doi.org/10.1175/1520-0469(1995)052<1807:DDPIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, B., 2009: Radiative transfer in the cloudy atmosphere. Eur. Phys. J. Conf., 1, 7599, https://doi.org/10.1140/epjconf/e2009-00912-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mech, M., E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens, 2014: HAMP—The microwave package on the High Altitude and Long Range Research Aircraft (HALO). Atmos. Meas. Tech., 7, 45394553, https://doi.org/10.5194/amt-7-4539-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita, 2013: Deep moist atmospheric convection in a subkilometer global simulation. Geophys. Res. Lett., 40, 49224926, https://doi.org/10.1002/grl.50944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieck, M., L. Nuijens, and B. Stevens, 2012: Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J. Atmos. Sci., 69, 25382550, https://doi.org/10.1175/JAS-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and Coauthors, 2018: The North Atlantic Waveguide and Downstream Impact Experiment. Bull. Amer. Meteor. Soc., 99, 16071637, https://doi.org/10.1175/BAMS-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnitt, S., E. Orlandi, M. Mech, A. Ehrlich, and S. Crewell, 2017: Characterization of water vapor and clouds during the Next-Generation Aircraft Remote Sensing for Validation (NARVAL) south studies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 31143124, https://doi.org/10.1109/JSTARS.2017.2687943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seethala, C., and Á. Horváth, 2010: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 115, D13202, https://doi.org/10.1029/2009JD012662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., and Coauthors, 2013: The fine-scale structure of the trade wind cumuli over Barbados—An introduction to the CARRIBA project. Atmos. Chem. Phys., 13, 10 06110 077, https://doi.org/10.5194/acp-13-10061-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and D. H. Lenschow, 2001: Observations, experiments, and large eddy simulation. Bull. Amer. Meteor. Soc., 82, 283294, https://doi.org/10.1175/1520-0477(2001)082<0283:OEALES>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579594, https://doi.org/10.1175/BAMS-84-5-579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2016: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. J., and Coauthors, 2015: A long-term, high-quality, high-vertical-resolution GPS dropsonde dataset for hurricane and other studies. Bull. Amer. Meteor. Soc., 96, 961973, https://doi.org/10.1175/BAMS-D-13-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., D. Müller, D. Schell, and J. Heintzenberg, 2001: An airborne spectral albedometer with active horizontal stabilization. J. Atmos. Oceanic Technol., 18, 18561866, https://doi.org/10.1175/1520-0426(2001)018<1856:AASAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2016: ACRIDICON–CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Amer. Meteor. Soc., 97, 18851908, https://doi.org/10.1175/BAMS-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2017: Understanding causes and effects of rapid warming in the Arctic. Eos, Trans. Amer. Geophys. Union, 98, 2226, https://doi.org/10.1029/2017EO064803.

    • Search Google Scholar
    • Export Citation
  • Werner, F., H. Siebert, P. Pilewskie, T. Schmeissner, R. A. Shaw, and M. Wendisch, 2013: New airborne retrieval approach for trade wind cumulus properties under overlying cirrus. J. Geophys. Res. Atmos., 118, 36343649, https://doi.org/10.1002/jgrd.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, M., A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, 2009: The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance. Appl. Phys., 96B, 201213, https://doi.org/10.1007/s00340-009-3365-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., and Coauthors, 2011: HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. Roy. Soc., 369A, 20732086, https://doi.org/10.1098/rsta.2010.0313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolf, K., A. Ehrlich, M. Jacob, S. Crewell, M. Wirth, and M. Wendisch, 2019: Improvement of airborne retrievals of cloud droplet number concentration of trade wind cumulus using a synergetic approach. Atmos. Meas. Tech., 12, 16351658, https://doi.org/10.5194/amt-12-1635-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Rípodas, and M. Baldauf, 2015: The ICON (Icosahedral Non-Hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2266 575 27
PDF Downloads 1675 285 19