The Aerosols, Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview, Illustrative Observations, and Way Forward

Paola Formenti LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace, Créteil, France

Search for other papers by Paola Formenti in
Current site
Google Scholar
PubMed
Close
,
Barbara D’Anna IRCELYON, UMR CNRS 5256, Université Lyon 1, Villeurbanne, and Aix Marseille Université, CNRS 7376, LCE, Marseille, France

Search for other papers by Barbara D’Anna in
Current site
Google Scholar
PubMed
Close
,
Cyrille Flamant LATMOS, UMR CNRS 8190, Sorbonne Université, Université Paris-Saclay, Institut Pierre Simon Laplace, Paris, France

Search for other papers by Cyrille Flamant in
Current site
Google Scholar
PubMed
Close
,
Marc Mallet CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Search for other papers by Marc Mallet in
Current site
Google Scholar
PubMed
Close
,
Stuart John Piketh North-West University, Potchefstroom, South Africa

Search for other papers by Stuart John Piketh in
Current site
Google Scholar
PubMed
Close
,
Kerstin Schepanski TROPOS, Leipzig, Germany

Search for other papers by Kerstin Schepanski in
Current site
Google Scholar
PubMed
Close
,
Fabien Waquet LOA, UMR CNRS 8518, Université de Lille, Lille, France

Search for other papers by Fabien Waquet in
Current site
Google Scholar
PubMed
Close
,
Frédérique Auriol LOA, UMR CNRS 8518, Université de Lille, Lille, France

Search for other papers by Frédérique Auriol in
Current site
Google Scholar
PubMed
Close
,
Gerard Brogniez LOA, UMR CNRS 8518, Université de Lille, Lille, France

Search for other papers by Gerard Brogniez in
Current site
Google Scholar
PubMed
Close
,
Frédéric Burnet CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Search for other papers by Frédéric Burnet in
Current site
Google Scholar
PubMed
Close
,
Jean-Pierre Chaboureau LA, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Jean-Pierre Chaboureau in
Current site
Google Scholar
PubMed
Close
,
Aurélien Chauvigné LOA, UMR CNRS 8518, Université de Lille, Lille, France

Search for other papers by Aurélien Chauvigné in
Current site
Google Scholar
PubMed
Close
,
Patrick Chazette LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, France

Search for other papers by Patrick Chazette in
Current site
Google Scholar
PubMed
Close
,
Cyrielle Denjean CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Search for other papers by Cyrielle Denjean in
Current site
Google Scholar
PubMed
Close
,
Karine Desboeufs LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace, Créteil, France

Search for other papers by Karine Desboeufs in
Current site
Google Scholar
PubMed
Close
,
Jean-François Doussin LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace, Créteil, France

Search for other papers by Jean-François Doussin in
Current site
Google Scholar
PubMed
Close
,
Nellie Elguindi LA, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Nellie Elguindi in
Current site
Google Scholar
PubMed
Close
,
Stefanie Feuerstein TROPOS, Leipzig, Germany

Search for other papers by Stefanie Feuerstein in
Current site
Google Scholar
PubMed
Close
,
Marco Gaetani LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, and LATMOS, UMR CNRS 8190, Sorbonne Université, Université Paris-Saclay, Institut Pierre Simon Laplace, Paris, France

Search for other papers by Marco Gaetani in
Current site
Google Scholar
PubMed
Close
,
Chiara Giorio Dipartimento di Scienze Chimiche, UniversitaÌ degli Studi di Padova, Padua, Italy

Search for other papers by Chiara Giorio in
Current site
Google Scholar
PubMed
Close
,
Danitza Klopper North-West University, Potchefstroom, South Africa

Search for other papers by Danitza Klopper in
Current site
Google Scholar
PubMed
Close
,
Marc Daniel Mallet LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil, and IRCELYON, UMR CNRS 5256, Université Lyon 1, Villeurbanne, France

Search for other papers by Marc Daniel Mallet in
Current site
Google Scholar
PubMed
Close
,
Pierre Nabat CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France

Search for other papers by Pierre Nabat in
Current site
Google Scholar
PubMed
Close
,
Anne Monod Aix Marseille Université, CNRS 7376, LCE, Marseille, France

Search for other papers by Anne Monod in
Current site
Google Scholar
PubMed
Close
,
Fabien Solmon LA, Université de Toulouse, CNRS, UPS, Toulouse, France

Search for other papers by Fabien Solmon in
Current site
Google Scholar
PubMed
Close
,
Andreas Namwoonde Sam Nujoma Marine and Coastal Resources Research Centre, University of Namibia, Henties Bay, Namibia

Search for other papers by Andreas Namwoonde in
Current site
Google Scholar
PubMed
Close
,
Chibo Chikwililwa Sam Nujoma Marine and Coastal Resources Research Centre, University of Namibia, Henties Bay, Namibia

Search for other papers by Chibo Chikwililwa in
Current site
Google Scholar
PubMed
Close
,
Roland Mushi Gobabeb Research and Training Centre, Walvis Bay, Namibia

Search for other papers by Roland Mushi in
Current site
Google Scholar
PubMed
Close
,
Ellsworth Judd Welton NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ellsworth Judd Welton in
Current site
Google Scholar
PubMed
Close
, and
Brent Holben NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Brent Holben in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Aerosol, Radiation and Clouds in southern Africa (AEROCLO-sA) project investigates the role of aerosols on the regional climate of southern Africa. This is a unique environment where natural and anthropogenic aerosols and a semipermanent and widespread stratocumulus (Sc) cloud deck are found. The project aims to understand the dynamical, chemical, and radiative processes involved in aerosol–cloud–radiation interactions over land and ocean and under various meteorological conditions. The AEROCLO-sA field campaign was conducted in August and September of 2017 over Namibia. An aircraft equipped with active and passive remote sensors and aerosol in situ probes performed a total of 30 research flight hours. In parallel, a ground-based mobile station with state-of-the-art in situ aerosol probes and remote sensing instrumentation was implemented over coastal Namibia, and complemented by ground-based and balloonborne observations of the dynamical, thermodynamical, and physical properties of the lower troposphere. The focus laid on mineral dust emitted from salty pans and ephemeral riverbeds in northern Namibia, the advection of biomass-burning aerosol plumes from Angola subsequently transported over the Atlantic Ocean, and aerosols in the marine boundary layer at the ocean–atmosphere interface. This article presents an overview of the AEROCLO-sA field campaign with results from the airborne and surface measurements. These observations provide new knowledge of the interactions of aerosols and radiation in cloudy and clear skies in connection with the atmospheric dynamics over southern Africa. They will foster new advanced climate simulations and enhance the capability of spaceborne sensors, ultimately allowing a better prediction of future climate and weather in southern Africa.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Paola Formenti, paola.formenti@lisa.u-pec.fr

A supplement to this article is available online (10.1175/BAMS-D-17-0278.2).

Abstract

The Aerosol, Radiation and Clouds in southern Africa (AEROCLO-sA) project investigates the role of aerosols on the regional climate of southern Africa. This is a unique environment where natural and anthropogenic aerosols and a semipermanent and widespread stratocumulus (Sc) cloud deck are found. The project aims to understand the dynamical, chemical, and radiative processes involved in aerosol–cloud–radiation interactions over land and ocean and under various meteorological conditions. The AEROCLO-sA field campaign was conducted in August and September of 2017 over Namibia. An aircraft equipped with active and passive remote sensors and aerosol in situ probes performed a total of 30 research flight hours. In parallel, a ground-based mobile station with state-of-the-art in situ aerosol probes and remote sensing instrumentation was implemented over coastal Namibia, and complemented by ground-based and balloonborne observations of the dynamical, thermodynamical, and physical properties of the lower troposphere. The focus laid on mineral dust emitted from salty pans and ephemeral riverbeds in northern Namibia, the advection of biomass-burning aerosol plumes from Angola subsequently transported over the Atlantic Ocean, and aerosols in the marine boundary layer at the ocean–atmosphere interface. This article presents an overview of the AEROCLO-sA field campaign with results from the airborne and surface measurements. These observations provide new knowledge of the interactions of aerosols and radiation in cloudy and clear skies in connection with the atmospheric dynamics over southern Africa. They will foster new advanced climate simulations and enhance the capability of spaceborne sensors, ultimately allowing a better prediction of future climate and weather in southern Africa.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Paola Formenti, paola.formenti@lisa.u-pec.fr

A supplement to this article is available online (10.1175/BAMS-D-17-0278.2).

Save
  • Abel, S. J., J. M. Haywood, E. J. Highwood, J. Li, and P. R. Buseck, 2003: Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophys. Res. Lett., 30, 1783, https://doi.org/10.1029/2003GL017342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adebiyi, A., and P. Zuidema, 2016: The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quart. J. Roy. Meteor. Soc., 142, 15741589, https://doi.org/10.1002/qj.2765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, B., R. J. Park, D. J. Jacob, Q. B. Li, R. M. Yantosca, J. Savarino, C. C. W. Lee, and M. H. Thiemens, 2005: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. J. Geophys. Res., 110, D10307, https://doi.org/10.1029/2004JD005659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, H., and J. Cermak, 2018: First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib. Atmos. Meas. Tech., 11, 54615470, https://doi.org/10.5194/amt-11-5461-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and A. Gelencsér, 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 31313148, https://doi.org/10.5194/acp-6-3131-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., W. Elbert, and S. J. de Mora, 1995: Biogenic sulfur emissions and aerosols over the tropical South Atlantic: Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei. J. Geophys. Res., 100, 11 33511 356, https://doi.org/10.1029/94JD02828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., J. Fishman, and J. Lindesay, 1996: The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction. J. Geophys. Res., 101, 23 51923 520, https://doi.org/10.1029/96JD01786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayers, G. P., and J. L. Gras, 1991: Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature, 353, 834835, https://doi.org/10.1038/353834a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayers, G. P., J. P. Ivey, and H. S. Goodman, 1986: Sulfate and methanesulphonate in the maritime aerosol at Cape Grim, Tasmania. J. Atmos. Chem., 4, 173185, https://doi.org/10.1007/BF00053777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakun, A., D. B. Field, A. Redondo-Rodriguez, and S. J. Weeks, 2010: Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Global Change Biol ., 16, 12131228, https://doi.org/10.1111/j.1365-2486.2009.02094.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, T. S., and Coauthors, 2001: Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview. J. Geophys. Res., 106, 20 76720 782, https://doi.org/10.1029/2000JD900578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluvshtein, N., and Coauthors, 2017: Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores. J. Geophys. Res. Atmos., 122, 54415456, https://doi.org/10.1002/2016JD026230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchers, S. L., B. Schnetger, P. Böning, and H.-J. Brumsack, 2005: Geochemical signatures of the Namibian diatom belt: Perennial upwelling and intermittent anoxia. Geochem. Geophys. Geosyst., 6, Q06006, https://doi.org/10.1029/2004GC000886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., F. Burnet, and O. Geoffroy, 2011: Cloud optical thickness and liquid water path. Does the k coefficient vary with droplet concentration? Atmos. Chem. Phys., 11, 97719786, https://doi.org/10.5194/acp-11-9771-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, M.-E., 2002: Estimation of potential productivity in eastern boundary currents using remote sensing. Deep-Sea Res. II, 49, 5880, https://doi.org/10.1016/S0967-0645(01)00094-7.

    • Search Google Scholar
    • Export Citation
  • Cermak, J., 2012: Low clouds and fog along the south-western African coast—Satellite-based retrieval and spatial pattern. Atmos. Res., 116, 1521, https://doi.org/10.1016/j.atmosres.2011.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655661, https://doi.org/10.1038/326655a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansie, A. P., G. F. S. Wiggs, D. S. G. Thomas, and R. Washington, 2017: Measurements of windblown dust characteristics and ocean fertilization potential: The ephemeral river valleys of Namibia. Aeolian Res ., 29, 3041, https://doi.org/10.1016/j.aeolia.2017.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, S., and Coauthors, 2017: Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region. J. Geophys. Res. Atmos., 122, 63916415, https://doi.org/10.1002/2016JD026421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deboudt, K., P. Flament, M. Choël, A. Gloter, S. Sobanska, and C. Colliex, 2010: Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis. J. Geophys. Res., 115, D24207, https://doi.org/10.1029/2010JD013921.

    • Search Google Scholar
    • Export Citation
  • Desboeufs, K., E. Journet, J.-L. Rajot, S. Chevaillier, S. Triquet, P. Formenti, and A. Zakou, 2010: Chemistry of rain events in West Africa: Evidence of dust and biogenic influence in convective systems. Atmos. Chem. Phys., 10, 92839293, https://doi.org/10.5194/acp-10-9283-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2003: Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J. Geophys. Res., 108, 8477, https://doi.org/10.1029/2002JD002321.

    • Search Google Scholar
    • Export Citation
  • Eckardt, F. D., and Coauthors, 2013: The nature of moisture at Gobabeb, in the central Namib Desert. J. Arid Environ., 93, 719, https://doi.org/10.1016/j.jaridenv.2012.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, N., and S. A. Christopher, 2015: Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds. J. Geophys. Res. Atmos., 120, 69086921, https://doi.org/10.1002/2015JD023252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, C., and Coauthors, 2018: The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa field campaign: Overview and research highlights. Bull. Amer. Meteor. Soc., 99, 83104, https://doi.org/10.1175/BAMS-D-16-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866, https://doi.org/10.1017/CBO9781107415324.020.

    • Search Google Scholar
    • Export Citation
  • Formenti, P., S. J. Piketh, and H. J. Annegarn, 1999: Detection of non-sea salt sulphate aerosol at a remote coastal site in South Africa: A PIXE study. Nucl. Instrum. Methods Phys. Res., 150B, 332338, https://doi.org/10.1016/S0168-583X(98)01041-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Formenti, P., W. Elbert, W. Maenhaut, J. Haywood, S. Osborne, and M. O. Andreae, 2003: Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning. J. Geophys. Res., 108, 8488, https://doi.org/10.1029/2002JD002408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Formenti, P., and Coauthors, 2018: Three years of measurements of light-absorbing aerosols over coastal Namibia: Seasonality, origin, and transport. Atmos. Chem. Phys., 18, 17 00317 016, https://doi.org/10.5194/acp-18-17003-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gainusa-Bogdan, A., F. Hourdin, A. Khadre Traore, and P. Braconnot, 2018: Omens of coupled model biases in the CMIP5 AMIP simulations. Climate Dyn ., 51, 29272941, https://doi.org/10.1007/s00382-017-4057-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys., 50, RG3005, https://doi.org/10.1029/2012RG000388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res ., 52, 729, https://doi.org/10.3354/cr01018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H., and Coauthors, 2018: Large simulated radiative effects of smoke in the south-east Atlantic. Atmos. Chem. Phys., 18, 15 26115 289, https://doi.org/10.5194/acp-18-15261-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gras, J. L., and M. Keywood, 2017: Cloud condensation nuclei over the Southern Ocean: Wind dependence and seasonal cycles. Atmos. Chem. Phys., 17, 44194432, https://doi.org/10.5194/acp-17-4419-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haensler, A., J. Cermak, S. Hagemann, and D. Jacob, 2011: Will the southern African west coast fog be affected by future climate change? Results of an initial fog projection using a regional climate model. Erdkunde, 65, 261275, https://doi.org/10.3112/erdkunde.2011.03.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, J., P. Francis, O. Dubovik, M. Glew, and B. Holben, 2003: Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and sun photometers during SAFARI 2000. J. Geophys. Res., 108, 8471, https://doi.org/10.1029/2002JD002687.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 2003: Clean air slots amid dense atmospheric pollution in southern Africa. J. Geophys. Res., 108, 8490, https://doi.org/10.1029/2002JD002156.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., A. Găinusă-Bogdan, P. Braconnot, J.-L. Dufresne, A.-K. Traore, and C. Rio, 2015: Air moisture control on ocean surface temperature, hidden key to the warm bias enigma. Geophys. Res. Lett., 42, 10 88510 893, https://doi.org/10.1002/2015GL066764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Intergovernmental Panel on Climate Change, 2013: Annex I: Atlas of global and regional climate projections. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 13111393.

    • Search Google Scholar
    • Export Citation
  • Jarre, A., and Coauthors, 2015: Synthesis: Climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish. Oceanogr., 24, 122149, https://doi.org/10.1111/fog.12086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, L., J.-P. Jalkanen, and J. Kukkonen, 2017: Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ., 167, 403415, https://doi.org/10.1016/j.atmosenv.2017.08.042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., and J. M. Haywood, 2012: Sea-spray geoengineering in the HadGEM2-ES Earth-system model: Radiative impact and climate response. Atmos. Chem. Phys., 12, 10 88710 898, https://doi.org/10.5194/acp-12-10887-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, A., J. M. Haywood, and O. Boucher, 2009: Climate impacts of geoengineering marine stratocumulus clouds. J. Geophys. Res., 114, D10106, https://doi.org/10.1029/2008JD011450.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., A. Körtzinger, and N. Gruber, 2010: Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2, 199229, https://doi.org/10.1146/annurev.marine.010908.163855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, A., and J. M. Haywood, 2003: Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties. J. Geophys. Res., 108, 8467, https://doi.org/10.1029/2002JD002315.

    • Search Google Scholar
    • Export Citation
  • Kirchstetter, T. W., T. Novakov, P. V. Hobbs, and B. Magi, 2003: Airborne measurements of carbonaceous aerosols in southern Africa during the dry biomass burning season. J. Geophys. Res., 108, 8476, https://doi.org/10.1029/2002JD002171.

    • Search Google Scholar
    • Export Citation
  • Lac, C., and Coauthors, 2018: Overview of the Meso-NH model version 5.4 and its applications. Geosci. Model Dev ., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leahy, L. V., T. L. Anderson, T. F. Eck, and R. W. Bergstrom, 2007: A synthesis of single scattering albedo of biomass burning aerosol over southern Africa during SAFARI 2000. Geophys. Res. Lett., 34, L12814, https://doi.org/10.1029/2007GL029697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennard, C. J., G. Nikulin, A. Dosio, and W. Moufouma-Okia, 2018: On the need for regional climate information over Africa under varying levels of global warming. Environ. Res. Lett., 13, 060401, https://doi.org/10.1088/1748-9326/aab2b4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, K., W. P. Arnott, H. Moosmüller, and C. E. Wold, 2008: Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res., 113, D16203, https://doi.org/10.1029/2007JD009699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindesay, J. A., M. O. Andreae, J. G. Goldammer, G. Harris, H. J. Annegarn, M. Garstang, R. J. Scholes, and B. W. van Wilgen, 1996: International Geosphere Biosphere Programme/International Global Atmospheric Chemistry SAFARI 92 field experiment: Background and overview. J. Geophys. Res., 101, 23 52123 530, https://doi.org/10.1029/96JD01512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., and Coauthors, 2014: Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies. Geophys. Res. Lett., 41, 742748, https://doi.org/10.1002/2013GL058392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louw, D., A. Van der Plas, V. Mohrholz, N. Wasmund, T. Junker, and A. Eggert, 2016: Seasonal and interannual phytoplankton dynamics and forcing mechanisms in the northern Benguela upwelling system. J. Mar. Syst., 157, 124134, https://doi.org/10.1016/j.jmarsys.2016.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magi, B. I., P. V. Hobbs, B. Schmid, and J. Redemann, 2003: Vertical profiles of light scattering, light absorption, and single scattering albedo during the dry, biomass burning season in southern Africa and comparisons of in situ and remote sensing measurements of aerosol optical depths. J. Geophys. Res., 108, 8504, https://doi.org/10.1029/2002JD002361.

    • Search Google Scholar
    • Export Citation
  • Maúre, G., I. Pinto, M. Ndebele-Murisa, M. Muthige, C. Lennard, G. Nikulin, A. Dosio, and A. Meque, 2018: The southern African climate under 1.5°C and 2°C of global warming as simulated by CORDEX regional climate models. Environ. Res. Lett., 13, 065002, https://doi.org/10.1088/1748-9326/aab190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazoyer, M., F. Burnet, G. C. Roberts, M. Haeffelin, J.-C. Dupont, and T. Elias, 2016: Experimental study of the aerosol impact on fog microphysics. Atmos. Chem. Phys. Discuss ., https://doi.org/10.5194/acp-2016-103.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., S. Platnick, L. Oreopoulos, and D. Lee, 2013: Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP. J. Geophys. Res. Atmos., 118, 48014815, https://doi.org/10.1002/jgrd.50449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom phase II simulations. Atmos. Chem. Phys., 13, 18531877, https://doi.org/10.5194/acp-13-1853-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nabat, P., and Coauthors, 2015: Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean. Atmos. Chem. Phys., 15, 33033326, https://doi.org/10.5194/acp-15-3303-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohde, T., and I. Dadou, 2018: Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system. PLOS ONE, 13, e0192140, https://doi.org/10.1371/journal.pone.0192140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olivier, J., 1995: Spatial distribution of fog in the Namib. J. Arid Environ., 29, 129138, https://doi.org/10.1016/S0140-1963(05)80084-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peers, F., and Coauthors, 2015: Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect. Atmos. Chem. Phys., 15, 41794196, https://doi.org/10.5194/acp-15-4179-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piketh, S. J., H. J. Annegarn, and P. D. Tyson, 1999: Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning. J. Geophys. Res., 104, 15971607, https://doi.org/10.1029/1998JD100014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radney, J. G., R. You, M. R. Zachariah, and C. D. Zangmeister, 2017: Direct in situ mass specific absorption spectra of biomass burning particles generated from smoldering hard and softwoods. Environ. Sci. Technol., 51, 56225629, https://doi.org/10.1021/acs.est.7b00810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, https://doi.org/10.1175/BAMS-87-12-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roehrig, R., D. Bouniol, F. Guichard, F. Hourdin, and J. L. Redelsperger, 2013: The present and future of the West African monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Climate, 26, 64716505, https://doi.org/10.1175/JCLI-D-12-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, K. E., S. J. Piketh, R. T. Bruintjes, R. P. Burger, R. J. Swap, and H. J. Annegarn, 2003: Spatial and seasonal variations in CCN distribution and the aerosol-CCN relationship over southern Africa. J. Geophys. Res., 108, 8481, https://doi.org/10.1029/2002JD002384.

    • Search Google Scholar
    • Export Citation
  • Saturno, J., and Coauthors, 2018: Black and brown carbon over central Amazonia: Long-term aerosol measurements at the ATTO site. Atmos. Chem. Phys., 18, 12 81712 843, https://doi.org/10.5194/acp-18-12817-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepanski, K., M. Mallet, B. Heinold, and M. Ulrich, 2016: North African dust transport toward the western Mediterranean Basin: Atmospheric controls on dust source activation and transport pathways during June–July 2013. Atmos. Chem. Phys., 16, 14 14714 168, https://doi.org/10.5194/acp-16-14147-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seely, M. K., and J. R. Henschel, 1998: The climatology of Namib fog. Proc. First Int. Conf. on Fog, Fog Collection, and Dew, Vancouver, BC, Canada, International Fog and Dew Association, 353356.

    • Search Google Scholar
    • Export Citation
  • Seely, M. K., M. P. de Vos, and G. N. Louw, 1977: Fog imbibition, satellite fauna and unusual leaf structure in a Namib Desert dune plant Trianthema hereroensis. S. Afr. J. Sci., 73, 169172.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change .2nd ed. Wiley, 1203 pp.

    • Search Google Scholar
    • Export Citation
  • Shannon, L. V., and G. Nelson, 1996: The Benguela: Large scale features and processes and system variability. The South Atlantic, Springer, 163210, https://doi.org/10.1007/978-3-642-80353-6_9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sievering, H., J. Cainey, M. Harvey, J. McGregor, and S. Nichol, 2004: Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: Ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J. Geophys. Res., 109, D19317, https://doi.org/10.1029/2003JD004315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R., M. Garstang, S. A. Macko, P. D. Tyson, W. Maenhaut, P. Artaxo, P. Kållberg, and R. Talbot, 1996: The long-range transport of southern African aerosols to the tropical South Atlantic. J. Geophys. Res., 101, 23 77723 791, https://doi.org/10.1029/95JD01049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R., H. J. Annegarn, J. T. Suttles, M. D. King, S. Platnick, J. L. Privette, and R. J. Scholes, 2003: Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J. Geophys. Res., 108, 8465, https://doi.org/10.1029/2003JD003747.

    • Search Google Scholar
    • Export Citation
  • Tournadre, J., 2014: Anthropogenic pressure on the open ocean: The growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett., 41, 79247932, https://doi.org/10.1002/2014GL061786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyson, P. D., and R. A. Preston-Whyte, 2000: The Weather and Climate of Southern Africa .Oxford University Press, 396 pp.

  • van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11 70711 735, https://doi.org/10.5194/acp-10-11707-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verheye, H. M., T. Lamont, J. A. Huggett, A. Kreiner, and I. Hampton, 2016: Plankton productivity of the Benguela Current Large Marine Ecosystem (BCLME). Environ. Dev., 17 (Suppl.), 7592, https://doi.org/10.1016/j.envdev.2015.07.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, K. J., F. D. Eckardt, and R. G. Bryant, 2013: A sub-basin scale dust plume source frequency inventory for southern Africa, 2005–2008. Geophys. Res. Lett., 40, 52745279, https://doi.org/10.1002/grl.50968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waquet, F., F. Peers, F. Ducos, P. Goloub, S. Platnick, J. Riedi, D. Tanré, and F. Thieuleux, 2013: Global analysis of aerosol properties above clouds. Geophys. Res. Lett., 40, 58095814, https://doi.org/10.1002/2013GL057482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R., and M. Todd, 2005: Atmospheric controls on mineral dust emission from the Bodele Depression, Chad: The role of the low-level jet. Geophys. Res. Lett., 32, L17701, https://doi.org/10.1029/2005GL023597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasmund, N., H. Siegel, K. Bohata, A. Flohr, A. Hansen, and V. Mohrholz, 2016: Phytoplankton stimulation in frontal regions of Benguela upwelling filaments by internal factors. Front. Mar. Sci., 3, 210, https://doi.org/10.3389/fmars.2016.00210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weeks, S. J., B. Currie, A. Bakun, and K. R. Peard, 2004: Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: Implications of a new view based on SeaWiFS satellite imagery. Deep-Sea Res. I, 51, 153172, https://doi.org/10.1016/j.dsr.2003.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., T. Shinoda, J.-L. Lin, and G. N. Kiladis, 2011: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J. Climate, 24, 41394164, https://doi.org/10.1175/2011JCLI4172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., J. Redemann, J. Haywood, R. Wood, S. Piketh, M. Hipondoka, and P. Formenti, 2016: Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bull. Amer. Meteor. Soc., 97, 11311135, https://doi.org/10.1175/BAMS-D-15-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2334 666 68
PDF Downloads 1887 447 44