A Global Gridded Dataset of the Characteristics of the Rainy And Dry Seasons

Rodrigo J. Bombardi Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Rodrigo J. Bombardi in
Current site
Google Scholar
PubMed
Close
,
James L. Kinter III Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by James L. Kinter III in
Current site
Google Scholar
PubMed
Close
, and
Oliver W. Frauenfeld Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Oliver W. Frauenfeld in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Rainy and Dry Seasons (RADS) dataset, a new compilation of precipitation statistics available to the public, is described. The dataset contains the dates of onset and demise of the rainy season (one date per year), the duration of the rainy and dry seasons, and the accumulated precipitation during the rainy and dry seasons. The methodology for detecting the characteristics of the rainy season is based solely on precipitation data. RADS was developed from multiple global gridded daily precipitation datasets [Tropical Rainfall Measuring Mission (TRMM), 1998–2015; Climate Prediction Center Unified Gauge-Based Analysis of Global Daily Precipitation (CPC_UNI), 1979–present; and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), 1980–present] and therefore shares the spatial resolution, temporal range, and limitations of the original precipitation datasets. This is the first free public dataset of the characteristics of the rainy and dry seasons created using a consistent methodology across the globe, including all major monsoonal regions. We expect that the RADS dataset will contribute to our understanding of the sources of variability of the timing of rainy seasons (on local to regional scales) and monsoons (on large scales) and their impacts on water resource management and other aspects of geosciences and human activities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Rodrigo J. Bombardi, rjbombardi@tamu.edu

A supplement to this article is available online (10.1175/BAMS-D-18-0177.2).

Abstract

The Rainy and Dry Seasons (RADS) dataset, a new compilation of precipitation statistics available to the public, is described. The dataset contains the dates of onset and demise of the rainy season (one date per year), the duration of the rainy and dry seasons, and the accumulated precipitation during the rainy and dry seasons. The methodology for detecting the characteristics of the rainy season is based solely on precipitation data. RADS was developed from multiple global gridded daily precipitation datasets [Tropical Rainfall Measuring Mission (TRMM), 1998–2015; Climate Prediction Center Unified Gauge-Based Analysis of Global Daily Precipitation (CPC_UNI), 1979–present; and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), 1980–present] and therefore shares the spatial resolution, temporal range, and limitations of the original precipitation datasets. This is the first free public dataset of the characteristics of the rainy and dry seasons created using a consistent methodology across the globe, including all major monsoonal regions. We expect that the RADS dataset will contribute to our understanding of the sources of variability of the timing of rainy seasons (on local to regional scales) and monsoons (on large scales) and their impacts on water resource management and other aspects of geosciences and human activities.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Rodrigo J. Bombardi, rjbombardi@tamu.edu

A supplement to this article is available online (10.1175/BAMS-D-18-0177.2).

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, L. M., J. A. Marengo, R. Fu, and R. J. Bombardi, 2017: Sensitivity of Amazon regional climate to deforestation. Amer. J. Climate Change, 6, 7598, https://doi.org/10.4236/ajcc.2017.61005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asharaf, S., A. Dobler, and B. Ahrens, 2012: Soil moisture–precipitation feedback processes in the Indian summer monsoon season. J. Hydrometeor., 13, 14611474, https://doi.org/10.1175/JHM-D-12-06.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2008: Variability of the monsoon regime over the Brazilian Savanna: the present climate and projections for a 2xCO2 scenario using the MIROC model. Rev. Bras. Meteor., 23, 5872, https://doi.org/10.1590/S0102-77862008000100007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2009: IPCC global coupled model simulations of the South America monsoon system. Climate Dyn ., 33, 893916, https://doi.org/10.1007/s00382-008-0488-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., E. K. Schneider, L. Marx, S. Halder, B. Singh, A. B. Tawfik, P. A. Dirmeyer, and J. L. Kinter, 2015: Improvements in the representation of the Indian summer monsoon in the NCEP Climate Forecast System version 2. Climate Dyn ., 45, 24852498, https://doi.org/10.1007/s00382-015-2484-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and Coauthors, 2016: The heated condensation framework as a convective trigger in the NCEP Climate Forecast System version 2. J. Adv. Model. Earth Syst., 8, 13101329, https://doi.org/10.1002/2016MS000668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., K. V. Pegion, J. L. Kinter, B. A. Cash, and J. M. Adams, 2017: Sub-seasonal predictability of the onset and demise of the rainy season over monsoonal regions. Front. Earth Sci., 5, 14, https://doi.org/10.3389/feart.2017.00014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camberlin, P., and M. Diop, 2003: Application of daily rainfall principal component analysis to the assessment of the rainy season characteristics in Senegal. Climate Res ., 23, 159169, https://doi.org/10.3354/cr023159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, F. Cannon, and J. Norris, 2016: Intraseasonal-to-interannual variability of the Indian monsoon identified with the large-scale index for the Indian monsoon system (LIMS). J. Climate, 29, 29412962, https://doi.org/10.1175/JCLI-D-15-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and B. M. Buckley, 2009: Objective determination of monsoon season onset, withdrawal, and length. J. Geophys. Res., 114, D23109, https://doi.org/10.1029/2009JD012795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, A. E., and L. M. V. Carvalho, 2007: Large-scale index for South America monsoon (LISAM). Atmos. Sci. Lett., 8, 5157, https://doi.org/10.1002/asl.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaconescu, E. P., P. Gachon, J. Scinocca, and R. Laprise, 2015: Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Climate Dyn ., 45, 13251354, https://doi.org/10.1007/s00382-014-2383-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunning, C. M., E. C. L. Black, and R. P. Allan, 2016: The onset and cessation of seasonal rainfall over Africa. J. Geophys. Res. Atmos., 121, 11 40511 424, https://doi.org/10.1002/2016JD025428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, https://doi.org/10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, M. A., V. E. Kousky, and C. F. Ropelewski, 2004: The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J. Climate, 17, 4766, https://doi.org/10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, S. R., and M. T. Kayano, 2009: Determination of the onset dates of the rainy season in central Amazon with equatorially antisymmetric outgoing longwave radiation. Theor. Appl. Climatol., 97, 361372, https://doi.org/10.1007/s00704-008-0080-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and P. K. Xavier, 2005: ENSO control on the South Asian monsoon through the length of the rainy season. Geophys. Res. Lett., 32, L18717, https://doi.org/10.1029/2005GL023216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Krishnamurthy, and H. Annmalai, 1999: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, https://doi.org/10.1002/qj.49712555412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., K. P. Sooraj, and C. K. Rajan, 2006: The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala. Int. J. Climatol., 26, 18711893, https://doi.org/10.1002/joc.1340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1988: Pentad outgoing longwave radiation climatology for the South American sector. Rev. Bras. Meteor., 3, 217231.

  • Lau, K. M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141162, https://doi.org/10.1007/s00376-997-0016-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W., and R. Fu, 2004: Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF Re-Analysis. J. Climate, 17, 26372651, https://doi.org/10.1175/1520-0442(2004)017<2637:TOTLAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and J. A. Marengo, 2001: Interannual variability of the rainy season and rainfall in the Brazilian Amazon basin. J. Climate, 14, 43084318, https://doi.org/10.1175/1520-0442(2001)014<4308:IVOTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., S. J. Camargo, A. Seth, J. A. Marengo, L. M. V. Carvalho, D. Allured, R. Fu, and C. S. Vera, 2007: Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J. Climate, 20, 20372050, https://doi.org/10.1175/JCLI4122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., I. Bladé, G. N. Kiladis, L. M. V. Carvalho, G. B. Senay, D. Allured, S. Leroux, and C. Funk, 2012: Seasonality of African precipitation from 1996 to 2009. J. Climate, 25, 43044322, https://doi.org/10.1175/JCLI-D-11-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., 2004: On smoothing potentially non-stationary climate time series. Geophys. Res. Lett., 31, L07214, https://doi.org/10.1029/2004GL019569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., B. Liebmann, V. E. Kousky, N. P. Filizola, and I. C. Wainer, 2001: Onset and end of the rainy season in the Brazilian Amazon basin. J. Climate, 14, 833852, https://doi.org/10.1175/1520-0442(2001)014<0833:OAEOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marteau, R., B. Sultan, V. Moron, A. Alhassane, C. Baron, and S. B. Traoré, 2011: The onset of the rainy season and farmers’ sowing strategy for pearl millet cultivation in southwest Niger. Agric. For. Meteor., 151, 13561369, https://doi.org/10.1016/j.agrformet.2011.05.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., and A. W. Robertson, 2014: Interannual variability of Indian summer monsoon rainfall onset date at local scale. Int. J. Climatol., 34, 10501061, https://doi.org/10.1002/joc.3745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, and J.-H. Qian, 2010: Local versus regional-scale characteristics of monsoon onset and post-onset rainfall over Indonesia. Climate Dyn ., 34, 281299, https://doi.org/10.1007/s00382-009-0547-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., J. L. McBride, and R. J. Ormerod, 1982: On predicting the onset of the Australian wet monsoon in Darwin. Mon. Wea. Rev., 110, 1417, https://doi.org/10.1175/1520-0493(1982)110<0014:OPTOOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto-Ferreira, R., and T. M. Rickenbach, 2011: Regionality of monsoon onset in South America: A three-stage conceptual model. Int. J. Climatol., 31, 13091321, https://doi.org/10.1002/joc.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noska, R., and V. Misra, 2016: Characterizing the onset and demise of the Indian summer monsoon. Geophys. Res. Lett., 43, 45474554, https://doi.org/10.1002/2016GL068409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raia, A., and I. F. A. Cavalcanti, 2008: The life cycle of the South American monsoon system. J. Climate, 21, 62276246, https://doi.org/10.1175/2008JCLI2249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 16431664, https://doi.org/10.1175/JCLI-D-16-0570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seregina, L. S., A. H. Fink, R. van der Linden, N. A. Elagib, and J. G. Pinto, 2019: A new and flexible rainy season definition: Validation for the Greater Horn of Africa and application to rainfall trends. Int. J. Climatol., 39, 9891012, https://doi.org/10.1002/joc.5856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivakumar, M. V. K., 1988: Predicting rainy season potential from the onset of rains in southern Sahelian and Sudanian climatic zones of West Africa. Agric. For. Meteor., 42, 295305, https://doi.org/10.1016/0168-1923(88)90039-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, R. D., M. D. Dennett, and D. J. Garbutt, 1981: The start of the rains in West Africa. J. Climatol ., 1, 5968, https://doi.org/10.1002/joc.3370010107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tadross, M. A., B. C. Hewitson, and M. T. Usman, 2005: The interannual variability of the onset of the maize growing season over South Africa and Zimbabwe. J. Climate, 18, 33563372, https://doi.org/10.1175/JCLI3423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, H. W., J. C. L. Chan, and W. Zhou, 2009: The role of MJO and mid-latitude fronts in the South China Sea summer monsoon onset. Climate Dyn ., 33, 827841, https://doi.org/10.1007/s00382-008-0490-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, https://doi.org/10.1002/qj.49711850705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., P. A. Arkin, and J. E. Janowiak, 2007: CMAP: The CPC merged analysis of precipitation. Measuring Precipitation From Space, Springer, 319328.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4203 1606 499
PDF Downloads 3284 896 57