A Meteotsunami Climatology along the U.S. East Coast

Gregory Dusek National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Gregory Dusek in
Current site
Google Scholar
PubMed
Close
,
Christopher DiVeglio National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Christopher DiVeglio in
Current site
Google Scholar
PubMed
Close
,
Louis Licate National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Louis Licate in
Current site
Google Scholar
PubMed
Close
,
Lorraine Heilman National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Lorraine Heilman in
Current site
Google Scholar
PubMed
Close
,
Katie Kirk National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Katie Kirk in
Current site
Google Scholar
PubMed
Close
,
Christopher Paternostro National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Christopher Paternostro in
Current site
Google Scholar
PubMed
Close
, and
Ashley Miller National Oceanic and Atmospheric Administration/National Ocean Service/Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Search for other papers by Ashley Miller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Meteotsunamis are atmospherically forced ocean waves with characteristics similar to seismic tsunamis. Several recent hazardous meteotsunamis resulted in damage and injuries along U.S. coastlines, such that the National Oceanic and Atmospheric Administration (NOAA) is investigating ways to detect and forecast meteotsunamis to provide advance warning. Better understanding meteotsunami occurrence along U.S. coastlines is a necessary step to pursue these objectives. Here a meteotsunami climatology of the U.S. East Coast is presented. The climatology relies on a wavelet analysis of 6-min water-level observations from 125 NOAA tide gauges from 1996 to 2017. A total of 548 meteotsunamis, or about per year, were identified and assessed using this approach along the U.S. East Coast. There were a total of 30 instances when gauges observed waves of more than 0.6 m, which is assumed to be a potentially impactful event, and several cases with wave heights more than 1 m. Tide gauges along the open coast observed the most frequent events, including more than five events per year at Atlantic City, New Jersey; Duck, North Carolina; and Myrtle Beach, South Carolina. The largest waves were observed by gauges in estuaries that amplified the meteotsunami signal, such as those in Providence, Rhode Island, and Port Canaveral, Florida. Seasonal trends indicate that meteotsunamis occur most frequently in the winter and summer months, especially July. This work supports future meteotsunami detection and warning capabilities at NOAA, including the development of an impact catalog to aid National Weather Service forecasters.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Gregory Dusek, gregory.dusek@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-18-0206.2).

Abstract

Meteotsunamis are atmospherically forced ocean waves with characteristics similar to seismic tsunamis. Several recent hazardous meteotsunamis resulted in damage and injuries along U.S. coastlines, such that the National Oceanic and Atmospheric Administration (NOAA) is investigating ways to detect and forecast meteotsunamis to provide advance warning. Better understanding meteotsunami occurrence along U.S. coastlines is a necessary step to pursue these objectives. Here a meteotsunami climatology of the U.S. East Coast is presented. The climatology relies on a wavelet analysis of 6-min water-level observations from 125 NOAA tide gauges from 1996 to 2017. A total of 548 meteotsunamis, or about per year, were identified and assessed using this approach along the U.S. East Coast. There were a total of 30 instances when gauges observed waves of more than 0.6 m, which is assumed to be a potentially impactful event, and several cases with wave heights more than 1 m. Tide gauges along the open coast observed the most frequent events, including more than five events per year at Atlantic City, New Jersey; Duck, North Carolina; and Myrtle Beach, South Carolina. The largest waves were observed by gauges in estuaries that amplified the meteotsunami signal, such as those in Providence, Rhode Island, and Port Canaveral, Florida. Seasonal trends indicate that meteotsunamis occur most frequently in the winter and summer months, especially July. This work supports future meteotsunami detection and warning capabilities at NOAA, including the development of an impact catalog to aid National Weather Service forecasters.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

CORRESPONDING AUTHOR: Gregory Dusek, gregory.dusek@noaa.gov

A supplement to this article is available online (10.1175/BAMS-D-18-0206.2).

Save
  • Anderson, E. J., A. J. Bechle, C. H. Wu, D. J. Schwab, G. E. Mann, and K. A. Lombardy, 2015: Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic response in enclosed basins. J. Geophys. Res. Oceans, 120, 80208038, https://doi.org/10.1002/2015JC010883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, K., C. DiVeglio, and A. Welty, 2014: An examination of the June 2013 East Coast meteotsunami captured by NOAA observing systems. NOAA Tech. Rep. NOS CO-OPS 079, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Bechle, A. J., D. A. R. Kristovich, and C. H. Wu, 2015: Meteotsunami occurrences and causes in Lake Michigan. J. Geophys. Res. Oceans, 120, 84228438, https://doi.org/10.1002/2015JC011317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechle, A. J., C. H. Wu, D. A. R. Kristovich, E. J. Anderson, D. J. Schwab, and A. B. Rabinovich, 2016: Meteotsunamis in the Laurentian Great Lakes. Sci. Rep., 6, 37832, https://doi.org/10.1038/srep37832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernhardt, J. E., and A. T. DeGaetano, 2012: Meteorological factors affecting the speed of movement and related impacts of extratropical cyclones along the U.S. East Coast. Nat. Hazards, 61, 14631472, https://doi.org/10.1007/s11069-011-0078-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caires, S., 2007: Extreme wave statistics: Confidence intervals. Delft Hydraulics Rep. H4803.30, 33 pp.

  • Cho, K.-H., J.-Y. Choi, K.-S. Park, S.-K. Hyun, Y. Oh, and J.-Y. Park, 2013: A synoptic study on tsunami-like sea level oscillations along the west coast of Korea using an unstructured-grid ocean model. J. Coastal Res., 65, 678683, https://doi.org/10.2112/SI65-115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, B.-J., C. Hwang, and S.-H. Lee, 2014: Meteotsunami-tide interactions and high-frequency sea level oscillations in the eastern Yellow Sea. J. Geophys. Res. Oceans, 119, 67256742, https://doi.org/10.1002/2013JC009788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., S. H. Houston, and N. A. Bond, 1995: The Daytona Beach wave of 3–4 July 1992—A shallow-water gravity wave forced by a propagating squall line. Bull. Amer. Meteor. Soc., 76, 2132, https://doi.org/10.1175/1520-0477(1995)076<0021:%20TDBWOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values .Springer-Verlag, 208 pp.

  • Coles, S., and E. Simiu, 2003: Estimating uncertainty in the extreme value analysis of data generated by a hurricane simulation model. J. Eng. Mech., 129, 12881294, https://doi.org/10.1061/(ASCE)0733-9399 (2003)129:11(1288).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, A., 1961: Physical Oceanography. Vol. 2. Pergamon Press, 598 pp.

  • de Jong, M. P. C., and J. A. Battjes, 2004: Low-frequency sea waves generated by atmospheric convection cells. J. Geophys. Res., 109, C01011, https://doi.org/10.1029/2003JC001931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, P. K., and Coauthors, 2008: Long-term tsunami data archive supports tsunami forecast, warning, research, and mitigation. Pure Appl. Geophys., 165, 22752291, https://doi.org/10.1007/s00024-008-0419-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunbar, P., G. Mungov, A. Sweeney, K. Stroker, and N. Arcos, 2017: Challenges in defining tsunami wave heights. Pure Appl. Geophys., 174, 30433063, https://doi.org/10.1007/s00024-017-1614-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwing, R. F., 1991: Next Generation Water Level Measurement System (NGWLMS): Site design, preparation, and installation manual. NOAA Tech. Rep., 213 pp.

    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19, 20762093, https://doi.org/10.1175/JCLI3725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finucane, M., 2018: There was a meteotsunami last night off the coast. What’s that? Boston Globe, 16 May, www.bostonglobe.com/metro/2018/05/16/there-was-meteotsunami-last-night-off-coast-what-that/tsxwTkkaTAhiCN4LoJ5LGI/story.html.

    • Search Google Scholar
    • Export Citation
  • Geist, E. L., U. S. ten Brink, and M. Gove, 2014: A framework for the probabilistic analysis of meteotsunamis. Nat. Hazards, 74, 123142, https://doi.org/10.1007/s11069-014-1294-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, S. K., and J. R. Schultz, Eds., 2000: Tidal datums and their applications. NOAA Rep. NOS CO-OPS 1, 112 pp.

  • Goring, D. G., 2005: Rissaga (long-wave events) on New Zealand’s eastern seaboard: A hazard for navigation. Proc. 17th Australasian Coastal Ocean Engineering Conf ., Adelaide, Australia, Institution of Engineers Australia, 137141.

    • Search Google Scholar
    • Export Citation
  • Greenspan, H. P., 1956: The generation of edge waves by moving pressure distributions. J. Fluid Mech., 1, 574592, https://doi.org/10.1017/S002211205600038X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guastini, C. T., and L. F. Bosart, 2016: Analysis of a progressive derecho climatology and associated formation environments. Mon. Wea. Rev., 144, 13631382, https://doi.org/10.1175/MWR-D-15-0256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidarzadeh, M., and K. Satake, 2013: The 21 May 2003 tsunami in the western Mediterranean Sea: Statistical and wavelet analyses. Pure Appl. Geophys., 170, 14491462, https://doi.org/10.1007/s00024-012-0509-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heitsenrether, R., and E. Davis, 2011: Test and evaluation report: Limited acceptance of the design analysis WaterLog H-3611i microwave radar water level sensor. NOAA Tech. Rep. NOS CO-OPS 061, 97 pp.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., and K. Kajiura, 1982: Origin of “abiki” phenomena (kind of seiches) in Nagasaki Bay. J. Oceanogr. Soc. Japan, 38, 172182, https://doi.org/10.1007/BF02110288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, https://doi.org/10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansá, A., S. Monserrat, and D. Gomis, 2007: The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Adv. Geosci., 12, 14, https://doi.org/10.5194/adgeo-12-1-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, P., and E. Foufoula-Georgiou, 1997: Wavelet analysis for geophysical applications. Rev. Geophys., 35, 385412, https://doi.org/10.1029/97RG00427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linares Á., A. J. Bechle, and C. H. Wu, 2016: Characterization and assessment of the meteotsunami hazard in northern Lake Michigan. J. Geophys. Res. Oceans, 121, 71417158, https://doi.org/10.1002/2016JC011979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B., J. Isaacson, B. Nyden, and D. Barrick, 2012: Tsunami arrival detection with high frequency (HF) radar. Remote Sens ., 4, 14481461, https://doi.org/10.3390/rs4051448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipa, B., H. Parikh, D. Barrick, H. Roarty, and S. Glenn, 2014: High-frequency radar observations of the June 2013 US East Coast meteotsunami. Nat. Hazards, 74, 109122, https://doi.org/10.1007/s11069-013-0992-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcos, M., S. Monserrat, R. Medina, A. Orfila, and M. Olabarrieta, 2009: External forcing of meteorological tsunamis at the coast of the Balearic Islands. Phys. Chem. Earth, 34, 938947, https://doi.org/10.1016/j.pce.2009.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monserrat, S., I. Vilibić, and A. B. Rabinovich, 2006: Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Nat. Hazards Earth Syst. Sci., 6, 10351051, https://doi.org/10.5194/nhess-6-1035-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mungov, G., M. Eble, and R. Bouchard, 2013: DART tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of tsunami research and operations. Pure Appl. Geophys., 170, 13691384, https://doi.org/10.1007/s00024-012-0477-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, J. C., and B. A. Colle, 2011: The spatial and temporal variability of convective storms over the northeast United States during the warm season. Mon. Wea. Rev., 139, 9921012, https://doi.org/10.1175/2010MWR3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nomitsu, T., 1935: A theory of tsunamis and seiches produced by wind and barometric gradient. Mem. Coll. Sci. Imp. Univ. Kyoto, 18A, 201214.

    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., A. Valle-Levinson, C. J. Martinez, C. Pattiaratchi, and L. M. Shi, 2017: Meteotsunamis in the northeastern Gulf of Mexico and their possible link to El Niño Southern Oscillation. Nat. Hazards, 88, 13251346, https://doi.org/10.1007/s11069-017-2922-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozsoy, O., I. D. Haigh, M. P. Wadey, R. J. Nicholls, and N. C. Wells, 2016: High-frequency sea level variations and implications for coastal flooding: A case study of the Solent, UK. Cont. Shelf Res., 122, 113, https://doi.org/10.1016/j.csr.2016.03.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., R. Heitsenrether, and W. Sweet, 2014: Water level and wave height estimates at NOAA tide stations from acoustic and microwave sensors. J. Atmos. Oceanic Technol., 31, 22942308, https://doi.org/10.1175/JTECH-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, B., 2007: Tidal analysis and prediction. NOAA Rep. NOS CO-OPS 3, 378 pp.

  • Pasquet, S., and I. Vilibić, 2013: Shelf edge reflection of atmospherically generated long ocean waves along the central U.S. East Coast. Cont. Shelf Res., 66, 18, https://doi.org/10.1016/j.csr.2013.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasquet, S., I. Vilibić, and J. Šepić, 2013: A survey of strong high-frequency sea level oscillations along the US East Coast between 2006 and 2011. Nat. Hazards Earth Syst., 13, 473482, https://doi.org/10.5194/nhess-13-473-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C., and E. M. S. Wijeratne, 2014: Observations of meteorological tsunamis along the south-west Australian coast. Nat. Hazards, 74, 281303, https://doi.org/10.1007/s11069-014-1263-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C., and E. M. S. Wijeratne, 2015: Are meteotsunamis an underrated hazard? Philos. Trans. Roy. Soc., 373A, 20140377, https://doi.org/10.1098/rsta.2014.0377.

    • Search Google Scholar
    • Export Citation
  • Paxton, C. H., and D. A. Sobien, 1998: Resonant interaction between an atmospheric gravity wave and shallow water wave along Florida’s west coast. Bull. Amer. Meteor. Soc., 79, 27272732, https://doi.org/10.1175/1520-0477(1998)079<2727:RIBAAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proudman, J., 1929: The effects on the sea of changes in atmospheric pressure. Geophys. Suppl. Mon. Not. Roy. Astron. Soc., 2, 197209, https://doi.org/10.1111/j.1365-246X.1929.tb05408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabinovich, A. B., and S. Monserrat, 1996: Meteorological tsunamis near the Balearic and Kuril Islands: Descriptive and statistical analysis. Nat. Hazards, 13, 5590, https://doi.org/10.1007/BF00156506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabinovich, A. B., and S. Monserrat, 1998: Generation of meteorological tsunamis (large amplitude seiches) near the Balearic and Kuril Islands. Nat. Hazards, 18, 2755, https://doi.org/10.1023/A:1008096627047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabinovich, A. B., and R. E. Thomson, 2007: The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the World Ocean part 1. Indian Ocean and South Africa. Pure Appl. Geophys., 164, 261308, https://doi.org/10.1007/s00024-006-0164-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabinovich, A. B., R. E. Thomson, and F. E. Stephenson, 2006: The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans. Surv. Geophys ., 27, 647677, https://doi.org/10.1007/s10712-006-9000-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raichlen, F., 1966: Harbor resonance. Estuary and Coastline Hydrodynamics, A. T. Ippen, Ed., McGraw Hill, 281340.

  • Renault, L., G. Vizoso, A. Janśa, J. Wilkin, and J. Tintore, 2011: Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophys. Res. Lett., 38, L10601, https://doi.org/10.1029/2011GL047361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallenger, A. H., J. H. List, G. Gelfenbaum, R. P. Stumpf, and M. Hansen, 1995: Large wave at Daytona Beach, Florida, explained as a squall-line surge. J. Coastal Res., 11, 13831388.

    • Search Google Scholar
    • Export Citation
  • Šepić, J., and I. Vilibić, 2011: The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Nat. Hazards Earth Syst ., 11, 8391, https://doi.org/10.5194/nhess-11-83-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šepić, J., I. Vilibić, and D. Belušić, 2009: Source of the 2007 Ist meteotsunami (Adriatic Sea). J. Geophys. Res., 114, C03016, https://doi.org/10.1029/2008JC005092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šepić, J., I. Vilibić, and N. S. Mahović, 2012: Northern Adriatic meteorological tsunamis: Observations, link to the atmosphere, and predictability. J. Geophys. Res., 117, C02002, https://doi.org/10.1029/2011JC007608.

    • Search Google Scholar
    • Export Citation
  • Šepić, J., I. Vilibić, A. B. Rabinovich, and S. Monserrat, 2015: Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Sci. Rep., 5, 11682, https://doi.org/10.1038/srep11682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, K., 2010: Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009. Nat. Hazards Earth Syst ., 10, 25992610, https://doi.org/10.5194/nhess-10-2599-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tappin, D. R., A. Sibley, K. Horsburgh, C. Daubord, D. Cox, and D. Long, 2013: The English Channel “tsunami” of 27 June 2011—A probable meteorological source. Weather, 68, 144152, https://doi.org/10.1002/wea.2061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and W. J. Emery, 2014: Data Analysis Methods in Physical Oceanography .Elsevier, 728 pp.

  • Thomson, R. E., A. B. Rabinovich, and M. V. Krassovski, 2007: Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophys. Res. Lett., 34, L15607, https://doi.org/10.1029/2007GL030685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., A. B. Rabinovich, I. V. Fine, D. C. Sinnott, A. McCarthy, N. A. S. Sutherland, and L. K. Neil, 2009: Meteorological tsunamis on the coasts of British Columbia and Washington. Phys. Chem. Earth, 34, 971988, https://doi.org/10.1016/j.pce.2009.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998) 079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilibić, I., S. Monserrat, and A. B. Rabinovich, 2014a: Meteorological tsunamis on the US East Coast and in other regions of the World Ocean. Nat. Hazards, 74, 19, https://doi.org/10.1007/s11069-014-1350-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilibić, I., K. Horvath, N. S. Mahović, S. Monserrat, M. Marcos, A. Amores, and I. Fine, 2014b: Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami. Nat. Hazards, 74, 2553, https://doi.org/10.1007/s11069-013-0811-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vilibić, I., J. Šepić, A. B. Rabinovich, and S. Monserrat, 2016: Modern approaches in meteotsunami research and early warning. Front. Mar. Sci., 3, 57, https://doi.org/10.3389/fmars.2016.00057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vučetić, T., I. Vilibić, S. Tinti, and A. Maramai, 2009: The Great Adriatic Flood of 21 June 1978 revisited: An overview of the reports. Phys. Chem. Earth, 34, 894903, https://doi.org/10.1016/j.pce.2009.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. Z., K. P. Li, Z. W. Yu, and J. Wu, 1987: Statistical characteristics of seiches in Longkou Harbor. J. Phys. Oceanogr., 17, 10631065, https://doi.org/10.1175/1520-0485(1987)017<1063:SCOSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wertman, C. A., R. M. Yablonsky, Y. Shen, J. Merrill, C. R. Kincaid, and R. A. Pockalny, 2014: Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the U.S. East Coast on June 13th, 2013. Sci. Rep., 4, 7143, https://doi.org/10.1038/srep07143.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3311 789 160
PDF Downloads 1973 308 24