Review of Advances in Precipitation Enhancement Research

Andrea I. Flossmann Université Clermont Auvergne/CNRS/Laboratoire de Météorologie Physique, Clermont-Ferrand, France

Search for other papers by Andrea I. Flossmann in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4484-6425
,
Michael Manton School of Earth Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Search for other papers by Michael Manton in
Current site
Google Scholar
PubMed
Close
,
Ali Abshaev Hail Suppression Research Center, Nalchik, Russia

Search for other papers by Ali Abshaev in
Current site
Google Scholar
PubMed
Close
,
Roelof Bruintjes National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roelof Bruintjes in
Current site
Google Scholar
PubMed
Close
,
Masataka Murakami Institute for Space–Earth Environmental Research, Nagoya University, Nagoya, Japan

Search for other papers by Masataka Murakami in
Current site
Google Scholar
PubMed
Close
,
Thara Prabhakaran Indian Institute of Tropical Meteorology, Pune, India

Search for other papers by Thara Prabhakaran in
Current site
Google Scholar
PubMed
Close
, and
Zhanyu Yao Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Zhanyu Yao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper provides a summary of the assessment report of the World Meteorological Organization (WMO) Expert Team on Weather Modification that discusses recent progress on precipitation enhancement research. The progress has been underpinned by advances in our understanding of cloud processes and interactions between clouds and their environment, which, in turn, have been enabled by substantial developments in technical capabilities to both observe and simulate clouds from the microphysical to the mesoscale. We focus on the two cloud types most commonly seeded in the past: winter orographic cloud systems and convective cloud systems. A key issue for cloud seeding is the extension from cloud-scale research to water catchment–scale impacts on precipitation on the ground. Consequently, the requirements for the design, implementation, and evaluation of a catchment-scale precipitation enhancement campaign are discussed. The paper concludes by indicating the most important gaps in our knowledge. Some recommendations regarding the most urgent research topics are given to stimulate further research.

CORRESPONDING AUTHOR: Andrea I. Flossmann, andrea.flossmann@uca.fr

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Abstract

This paper provides a summary of the assessment report of the World Meteorological Organization (WMO) Expert Team on Weather Modification that discusses recent progress on precipitation enhancement research. The progress has been underpinned by advances in our understanding of cloud processes and interactions between clouds and their environment, which, in turn, have been enabled by substantial developments in technical capabilities to both observe and simulate clouds from the microphysical to the mesoscale. We focus on the two cloud types most commonly seeded in the past: winter orographic cloud systems and convective cloud systems. A key issue for cloud seeding is the extension from cloud-scale research to water catchment–scale impacts on precipitation on the ground. Consequently, the requirements for the design, implementation, and evaluation of a catchment-scale precipitation enhancement campaign are discussed. The paper concludes by indicating the most important gaps in our knowledge. Some recommendations regarding the most urgent research topics are given to stimulate further research.

CORRESPONDING AUTHOR: Andrea I. Flossmann, andrea.flossmann@uca.fr

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Save
  • Abshaev, M. T., A. M. Abshaev, G. K. Sulakvelidze, I. I. Burtsev, and A. M. Malkarova, 2006: Development of rocket and artillery technology for hail suppression. Achievements in Weather Modification, United Arab Emirates Department of Atmospheric Studies, 109–127.

    • Search Google Scholar
    • Export Citation
  • Abshaev, M. T., A. M. Abshaev, A. M. Malkarova, and M. V. Zharashuev, 2010: Automated radar identification, measurement of parameters, and classification of convective cells for hail protection and storm warning. Russ. Meteor. Hydrol., 35, 182189, https://doi.org/10.3103/S1068373910030040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abshaev, M. T., A. M. Abshaev, M. V. Barekova, and A. M. Malkarova, 2014: Manual on Organization and Execution of Hail Suppression Projects. Pechatniy Dvor ltd., 508 pp.

    • Search Google Scholar
    • Export Citation
  • Adzhiev, A. K., and R. K. Kalov, 2015: Studying the influence of electric charges and fields on the efficiency of ice formation with silver iodide particles. Problems of Cloud Physics, Russian Hydrometeorological Service, 7388.

    • Search Google Scholar
    • Export Citation
  • Araki, K., M. Murakami, H. Ishimoto, and T. Tajiri, 2015: Ground-based microwave radiometer variational analysis during no-rain and rain conditions. SOLA, 11, 108112, https://doi.org/10.2151/sola.2015-026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Coauthors, 2017: Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor. Climatol., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breed, D., R. Rasmussen, C. Weeks, B. Boe, and T. Deshler, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, https://doi.org/10.1175/JAMC-D-13-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall, 1995: The dispersion of tracer plumes in mountainous regions in central Arizona: Comparisons between observations and modeling results. J. Appl. Meteor., 34, 971988, https://doi.org/10.1175/1520-0450(1995)034<0971:TDOTPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., V. Salazar, T. A. Semeniuk, P. Buseck, D. W. Breed, and J. Gunkelman, 2012: Evaluation of hygroscopic cloud seeding flares. J. Wea. Modif., 44, 6994, https://journalofweathermodification.org/index.php/JWM/article/view/85.

    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and B. Pokharel, 2017a: A case study of cloud radar observations and large-eddy simulations of a shallow stratiform orographic cloud, and the impact of glaciogenic seeding. J. Appl. Meteor. Climatol., 56, 12851304, https://doi.org/10.1175/JAMC-D-16-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and R. Rasmussen, 2017b: Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study. J. Appl. Meteor. Climatol., 56, 6984, https://doi.org/10.1175/JAMC-D-16-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and Coauthors, 2016: BASTA: A 95-GHz FMCW Doppler radar for cloud and fog studies. J. Atmos. Oceanic Technol., 33, 10231038, https://doi.org/10.1175/JTECH-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessens, J., J. L. Saìnchez, C. Berthet, L. Hermida, and A. Merino, 2016: Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects. Atmos. Res., 170, 98111, https://doi.org/10.1016/j.atmosres.2015.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drofa, A. S., V. G. Eran’kov, V. N. Ivanov, A. G. Shilin, and G. F. Iskevich, 2013: Experimental investigations of the effect of cloud-medium modification by salt powders. Izv. Atmos. Ocean. Phys., 49, 298306, https://doi.org/10.1134/S0001433813030043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

    • Search Google Scholar
    • Export Citation
  • Fleming, J. R., 2010: Fixing the Sky. Columbia University Press, 801 pp.

  • Flossmann, A. I., and W. Wobrock, 2010: A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modelling. Atmos. Res., 97, 478497, https://doi.org/10.1016/j.atmosres.2010.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., and Coauthors, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA, 115, 11681173, https://doi.org/10.1073/pnas.1716995115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freud, E., H. Koussevitzky, T. Goren, and D. Rosenfeld, 2015: Cloud microphysical background for the Israel-4 cloud seeding experiment. Atmos. Res., 158–159, 122138, https://doi.org/10.1016/j.atmosres.2015.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302, https://doi.org/10.1175/2010JAS3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geresdi, I., L. Xue, and R. Rasmussen, 2017: Evaluation of orographic cloud seeding using a bin microphysics scheme: Two-dimensional approach. J. Appl. Meteor. Climatol., 56, 14431462, https://doi.org/10.1175/JAMC-D-16-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464, https://doi.org/10.1175/JAS-D-14-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasan, M. M., A. Sharma, G. Mariethoz, F. Johnson, and A. Seed, 2016: Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework. Adv. Water Resour., 97, 205218, https://doi.org/10.1016/j.advwatres.2016.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hashimoto, A., N. Orikasa, T. Tajiri, and M. Murakami, 2017: Numerical prediction experiment over the United Arab Emirates by using JMA-NHM. JCAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 47, 5-07.

    • Search Google Scholar
    • Export Citation
  • Hiron, T., and A. I. Flossmann, 2015: A study of the role of the parameterization of heterogeneous ice nucleation for the modeling of microphysics and precipitation of a convective cloud. J. Atmos. Sci., 72, 33223339, https://doi.org/10.1175/JAS-D-15-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 98179854, https://doi.org/10.5194/acp-12-9817-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, 147, https://doi.org/10.1029/2011RG000365.

  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., and Coauthors, 2018: Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE. Hydrol. Earth Syst. Sci., 22, 14371452, https://doi.org/10.5194/hess-22-1437-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshida, T., M. Murakami, K. Yoshida, F. Fujibe, and K. Takahashi, 2012: Assessment of clouds suitable for summertime precipitation augmentation over Shikoku Island. SOLA, 8, 160164, https://doi.org/10.2151/sola.2012-039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., G. Villarini, and J. A. Smith, 2010: Radar-rainfall uncertainties: Where are we after thirty years of effort? Bull. Amer. Meteor. Soc., 91, 8794, https://doi.org/10.1175/2009BAMS2747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuba, N., and M. Murakami, 2010: Effect of hygroscopic seeding on warm rain clouds—Numerical study using a hybrid cloud microphysical model. Atmos. Chem. Phys., 10, 33353351, https://doi.org/10.5194/acp-10-3335-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, J. R., and Coauthors, 2012: The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): Overview and preliminary results. Curr. Sci., 102, 413425, www.currentscience.ac.in/Volumes/102/03/0413.pdf.

    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and Coauthors, 2017: Observations of severe local storms and tornadoes with the atmospheric imaging radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leisner, T., and Coauthors, 2013: Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions. Proc. Natl. Acad. Sci. USA, 110, 102106–102110, https://doi.org/10.1073/pnas.1222190110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast product, and how the products are used. J. Appl. Meteor. Climatol., 47, 10771092, https://doi.org/10.1175/2007JAMC1653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lompar, M., M. Cìuricì, and D. Romanic, 2017: Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols. Atmos. Res., 194, 164177, https://doi.org/10.1016/j.atmosres.2017.04.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maahn, M., and P. Kollias, 2012: Improved micro rain radar snow measurements using Doppler spectra post-processing. Atmos. Meas. Tech., 5, 26612673, https://doi.org/10.5194/amt-5-2661-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and L. Warren, 2011: A confirmatory snowfall enhancement project in the snowy mountains of Australia. Part II: Primary and associated analyses. J. Appl. Meteor. Climatol., 50, 14481458, https://doi.org/10.1175/2011JAMC2660.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., L. Warren, S. L. Kenyon, A. D. Peace, S. P. Bilish, and K. Kemsley, 2011: A confirmatory snowfall enhancement project in the snowy mountains of Australia. Part I: Project design and response variables. J. Appl. Meteor. Climatol., 50, 14321447, https://doi.org/10.1175/2011JAMC2659.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manton, M. J., A. D. Peace, K. Kemsley, S. Kenyon, J. C. Speirs, L. Warren, and J. Denholm, 2017: Further analysis of a snowfall enhancement project in the snowy mountains of Australia. Atmos. Res., 193, 192203, https://doi.org/10.1016/j.atmosres.2017.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2017: Processing of ice cloud in situ data collected by bulk water, scattering, and imaging probes: Fundamentals, uncertainties, and efforts toward consistency. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Q., and B. Geerts, 2013: Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation. Adv. Atmos. Sci., 30, 10251038, https://doi.org/10.1007/s00376-012-2128-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, https://doi.org/10.1175/JAS3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, M., and Coauthors, 2011: Japanese Cloud Seeding Experiments for Precipitation Augmentation (JCSEPA)—New approaches and some results from wintertime and summertime weather modification programs. Proc. 10th Scientific Conf. on Weather Modification, Bali, Indonesia, WMO, 234237.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2003: Critical Issues in Weather Modification Research. National Academy Press ,131 pp.

  • Osburn, L., T. Chubb, S. Siems, M. Manton, and A. D. Peace, 2016: Observations of supercooled liquid water in wintertime Alpine storms in south eastern Australia. Atmos. Res., 169, 345356, https://doi.org/10.1016/j.atmosres.2015.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Planche, C., W. Wobrock, A. I. Flossmann, F. Tridon, J. Van Baelen, Y. Pointin, and M. Hagen, 2010: The influence of aerosol particle number and hygroscopicity on the evolution of convective cloud systems and their precipitation: A numerical study based on the COPS observations on 12 August 2007. Atmos. Res., 98, 4056, https://doi.org/10.1016/j.atmosres.2010.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokharel, B., B. Geerts, X. Jing, K. Friedrich, J. Aikins, D. Breed, R. Rasmussen, and A. Huggins, 2014: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli. Atmos. Res., 147–148, 162182, https://doi.org/10.1016/j.atmosres.2014.05.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabha, T. V., A. Khain, R. S. Maheshkumar, G. Pandithurai, J. R. Kulkarni, M. Konwar, and B. N. Goswami, 2011: Microphysics of premonsoon and monsoon clouds as seen from in situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). J. Atmos. Sci., 68, 18821901, https://doi.org/10.1175/2011JAS3707.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation: With an Introduction to Cloud Chemistry and Cloud Electricity. 2nd ed. Kluwer Academic, 954 pp.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2018: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteor. Climatol., 57, 26392660, https://doi.org/10.1175/JAMC-D-17-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritzman, J. M., T. Deshler, K. Ikeda, and R. Rasmussen, 2015: Estimating the fraction of winter orographic precipitation produced under conditions meeting the seeding criteria for the Wyoming Weather Modification Pilot Project. J. Appl. Meteor. Climatol., 54, 12021215, https://doi.org/10.1175/JAMC-D-14-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., and W. D. King, 1997: A critical review of the Australian experience in cloud seeding. Bull. Amer. Meteor. Soc., 78, 239254, https://doi.org/10.1175/1520-0477(1997)078<0239:ACROTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2004: A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor. Climatol., 43, 182195, https://doi.org/10.1175/1520-0450(2004)043<0182:ALMAPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., A. Khain, M. Pinsky, and D. Rosenfeld, 2004: Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model. Atmos. Res., 71, 334, https://doi.org/10.1016/j.atmosres.2004.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, Y., M. Pinsky, and A. Khain, 2007: The role of competition effect in the raindrop formation. Atmos. Res., 83, 106118, https://doi.org/10.1016/j.atmosres.2006.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seto, J., K. Tomine, K. Wakimizu, and K. Nishiyama, 2011: Artificial cloud seeding using liquid carbon dioxide: Comparison of experimental data and numerical analyses. J. Appl. Meteor. Climatol., 50, 14171431, https://doi.org/10.1175/2011JAMC2592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shippey, K., A. Görgens, D. Terblanche, and M. Luger, 2004: Environmental challenges to operationalisation of South African rainfall enhancement. Water SA, 30 (5), 8892, https://doi.org/10.4314/wsa.v30i5.5173.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. A., and W. Sukarnjanaset, 2000: Result of the Thailand warm-cloud hygroscopic particle seeding experiment. J. Appl. Meteor. Climatol., 39, 11601175, https://doi.org/10.1175/1520-0450(2000)039<1160:ROTTWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinkevich, A. A., and T. W. Krauss, 2014: Changes in thunderstorm characteristics due to feeder cloud merging. Atmos. Res., 142, 124132, https://doi.org/10.1016/j.atmosres.2013.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, Y., and Coauthors, 2017: Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. ACS Nano, 11, 12 31812 325, https://doi.org/10.1021/acsnano.7b06114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, X., Y. Qiu, Y. Yang, D. Liu, X. Lu, and Y. Pan, 2016: Enhanced growth of single droplet by control of equivalent charge on droplet. IEEE Trans. Plasma Sci., 44, 27242728, https://doi.org/10.1109/TPS.2016.2608832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terblanche, D. E., F. E. Steffens, L. Fletcher, M. P. Mittermaier, and R. C. Parsons, 2000: Toward the operational application of hygroscopic flares for rainfall enhancement in South Africa. J. Appl. Meteor. Climatol., 39, 18111821, https://doi.org/10.1175/1520-0450(2001)039<1811:TTOAOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terblanche, D. E., M. P. Mittermaier, R. P. Burger, K. J. P. De Waal, and X. G. Ncipha, 2005: The South African Rainfall Enhancement Programme: 1997-2001. Water SA, 31 (3), 291298, http://hdl.handle.net/10520/EJC116273.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2012: The Queensland Cloud Seeding Research Program. Bull. Amer. Meteor. Soc., 93, 7590, https://doi.org/10.1175/BAMS-D-11-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2019: Transformational approach to winter orographic weather modification research: The SNOWIE Project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vali, G., P. J. DeMott, O. Möhler, and T. F. Whale, 2015: Technical note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10 26310 270, https://doi.org/10.5194/acp-15-10263-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore, 2008: Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res., 113, D11102, https://doi.org/10.1029/2007JD009214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2014: Further sensitivities of orographic precipitation to terrain geometry in idealized simulations. J. Atmos. Sci., 71, 30683089, https://doi.org/10.1175/JAS-D-13-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieringa, J., and I. Holleman, 2006: If cannons cannot fight hail, what else? Meteor. Z., 15, 659669, https://doi.org/10.1127/0941-2948/2006/0147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2000: Report on the WMO International Workshop on Hygroscopic Seeding: Experimental results, physical processes, and research needs. WMO Rep. WMO/TD-1006, 68 pp.

  • WMO, 2010: WMO documents on weather modification; Updated in the meeting of the Expert Team on Weather Modification Research. WMO Rep., 13 pp., www.wmo.int/pages/prog/arep//wwrp/new/documents/WMR_documents.final_27_April_1.FINAL.pdf.

  • WMO, 2018a: Peer review report on global precipitation enhancement activities. WMO Rep. WWRP 2018-1, 129 pp., www.wmo.int/pages/prog/arep/wwrp/new/documents/FINAL_WWRP_2018_1.pdf.

    • Search Google Scholar
    • Export Citation
  • WMO, 2018b: Plans and guidance for weather modification activities. Executive Council: Sixty-ninth session, WMO Rep. WMO-1196, 261–264, https://library.wmo.int/doc_num.php?explnum_id=3645.

    • Search Google Scholar
    • Export Citation
  • Xue, L., S. A. Tessendorf, E. Nelson, R. Rasmussen, D. Breed, S. Parkinson, P. Holbrook, and D. Blestrud, 2013: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D simulations of actual seeding events and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, https://doi.org/10.1175/JAMC-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, and B. Geerts, 2016: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatol., 55, 445464, https://doi.org/10.1175/JAMC-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, Y., M. Murakami, Y. Kurumisawa, T. Kato, A. Hashimoto, T. Yamazaki, and N. Haneda, 2009: Evaluation of snow augmentation by cloud seeding for drought mitigation. J. Japan Soc. Hydrol. Water Resour., 22, 209222, https://doi.org/10.3178/jjshwr.22.209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 16343 6645 1113
PDF Downloads 11977 4242 655