• Allan, R. P., 2012: The role of water vapour in Earth’s energy flows. Surv. Geophys., 33, 557564, https://doi.org/10.1007/s10712-011-9157-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, A., K. Graw, M. Schröder, K. Fennig, J. Liman, S. Bakan, R. Hollmann, and C. Klepp, 2017: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS 4.0. Satellite Application Facility on Climate Monitoring, accessed 15 July 2019, https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002.

    • Crossref
    • Export Citation
  • Bates, J. J., J. L. Privette, E. J. Kearns, W. Glance, and X. Zhao, 2016: Sustained production of multidecadal climate records: Lessons from the NOAA Climate Data Record program. Bull. Amer. Meteor. Soc., 97, 15731581, https://doi.org/10.1175/BAMS-D-15-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevan, S. L., P. R. J. North, S. O. Los, and W. M. F. Grey, 2012: A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sens. Environ., 116, 199210, https://doi.org/10.1016/j.rse.2011.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bojinski, S., M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The concept of essential climate variables in support of climate research, applications, and policy. Bull. Amer. Meteor. Soc., 95, 14311443, https://doi.org/10.1175/BAMS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutin, J., J.-L. Vergely, J. Koehler, F. Rouffi, and N. Reul, 2019: ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): version 1.8 data collection. Centre for Environmental Data Analysis, accessed 15 June 2019, http://doi.org/10.5285/9ef0ebf847564c2eabe62cac4899ec41.

    • Crossref
    • Export Citation
  • Buchwitz, M., and Coauthors, 2015: The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sens. Environ., 162, 344362, https://doi.org/10.1016/j.rse.2013.04.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuvieco, E., and Coauthors, 2019: Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ., 225, 4564, https://doi.org/10.1016/j.rse.2019.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, S. J., and Coauthors, 2009: Lessons learned from IPCC AR4: Scientific developments needed to understand, predict, and respond to climate change. Bull. Amer. Meteor. Soc., 90, 497514, https://doi.org/10.1175/2008BAMS2643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2017: ESA CCI soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185215, https://doi.org/10.1016/j.rse.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ESA, 2019: CCI data standards version 2.0. ESA Climate Office Doc. CCI-PRGM-EOPS-TN-13-0009, 23 pp., http://cci.esa.int/sites/default/files/filedepot/incoming/CCIDataStandards_v2-0_CCI-PRGM-EOPS-TN-13-0009.pdf.

  • Ezraty, R., F. Girard-Ardhuin, J. F. Piolle, L. Kaleschke, and G. Heygster, 2007: Arctic and Antarctic sea ice concentration and Arctic sea ice drift estimated from special sensors microwave data. User manual version 2.1, IFREMER CERSAT Doc., 22 pp.

    • Search Google Scholar
    • Export Citation
  • GCOS, 2016: GCOS Implementation Plan 2016—The Global Observing System for Climate: Implementation needs. ESA, http://cci.esa.int/content/gcos-implementation-plan-2016-global-observing-system-climate-implementation-needs.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., T. Scanlon, R. van der Schalie, W. Wagner, and W. Dorigo, 2019: Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data, 11, 717739, https://doi.org/10.5194/essd-11-717-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2014: Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat. Geosci., 7, 768776, https://doi.org/10.1038/ngeo2236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and Coauthors, 2013: The ESA Climate Change Initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, https://doi.org/10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer-Popp, T., and Coauthors, 2002: Das automatische Atmosphärenkorrekturverfahren DurchBlick. Fernerkundung und GIS: Neue Sensoren–Innovative Methoden, T. Blaschke, Ed., H. Wichmann Verlag, 7887.

    • Search Google Scholar
    • Export Citation
  • Immler, F. J., J. Dykema, T. Gardiner, D. N. Whiteman, P. W. Thorne, and H. Vomel, 2010: Reference quality upper-air measurements: Guidance for developing GRUAN data products. Atmos. Meas. Tech., 3, 12171231, https://doi.org/10.5194/amt-3-1217-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOCCG, 2010: Atmospheric correction for remotely-sensed ocean-colour products. International Ocean-Colour Coordinating Group Rep. 10, 84 pp.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2014: Climate Change 2014: Synthesis Report. IPCC, 151 pp.

  • IPCC, 2018: Global Warming of 1.5°C. World Meteorological Organization, 630 pp., www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2019a: The Ocean and Cryosphere in a Changing Climate. WMO, 1170 pp., https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2019b: Climate Change and Land. World Meteorological Organization, 874 pp., www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.

    • Search Google Scholar
    • Export Citation
  • Kääb, A., S. H. Winsvold, B. Altena, C. Nuth, T. Nagler, and J. Wuite, 2016: Glacier remote sensing using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sens ., 8, 598, https://doi.org/10.3390/rs8070598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeais, J.-F., and Coauthors, 2018: An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data, 10, 281301, https://doi.org/10.5194/essd-10-281-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2018: Global carbon budget 2018. Earth Syst. Sci. Data, 10, 21412194, https://doi.org/10.5194/essd-10-2141-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and E. Cattani, 2019: Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate. Remote Sens ., 11, 2301, https://doi.org/10.3390/rs11192301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys., 27, 27552770, https://doi.org/10.5194/angeo-27-2755-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lizundia-Loiola, J., G. Otón, R. Ramo, and E. Chuvieco, 2020: A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ., 236, 111493, https://doi.org/10.1016/j.rse.2019.111493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2017: Uncertainty information in climate data records from Earth observation. Earth Syst. Sci. Data, 9, 511527, https://doi.org/10.5194/essd-9-511-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2019: Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data, 6, 223, https://doi.org/10.1038/s41597-019-0236-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., and Coauthors, 2017: Evaluating model simulations of twentieth-century sea-level rise. Part II: Regional sea-level changes. J. Climate, 30, 85658593, https://doi.org/10.1175/JCLI-D-17-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2014: OMI/Aura and MODIS/Aqua merged cloud product. NASA, https://cmr.earthdata.nasa.gov/search/concepts/C1265734652-GES_DISC.html.

    • Search Google Scholar
    • Export Citation
  • North, P., S. Briggs, S. Plummer, and J. Settle, 1999: Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery. IEEE Trans. Geosci. Remote Sens., 37, 526537, https://doi.org/10.1109/36.739106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, F., and Coauthors, 2015: The Glaciers Climate Change Initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ., 162, 408426, https://doi.org/10.1016/j.rse.2013.07.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, T., 1995: Correcting atmospheric masking to retrieve the spectral albedo of land surfaces from satellite measurements. Int. J. Remote Sens., 16, 34833508, https://doi.org/10.1080/01431169508954642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, T., and Coauthors, 2016: Development, production and evaluation of aerosol climate data records from European satellite observations (Aerosol_cci). Remote Sens ., 8, 421, https://doi.org/10.3390/rs8050421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C. A., and Coauthors, 2012: Cloud retrievals from satellite data using optimal estimation: Evaluation and application to ATSR. Atmos. Meas. Tech., 5, 1889–1910, https://doi.org/10.5194/amt-5-1889-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., and Coauthors, 2017: Early snowmelt significantly enhances boreal springtime carbon uptake. Proc. Natl. Acad. Sci. USA, 114, 11 08111 086, https://doi.org/10.1073/pnas.1707889114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quartly, G. D., and Coauthors, 2017: A new phase in the production of quality-controlled sea level data. Earth Syst. Sci. Data, 9, 557572, https://doi.org/10.5194/essd-9-557-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queffeulou, P., and D. Croizé-Fillon, 2016: Global altimeter SWH data set. User guide. IFREMER Laboratoire d’Océanographie Spatiale Doc., 10 pp.

  • Reuter, M., and Coauthors, 2013: A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: The ensemble median algorithm EMMA. Atmos. Chem. Phys., 13, 17711780, https://doi.org/10.5194/acp-13-1771-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, M., and Coauthors, 2017: How much CO2 is taken up by the European terrestrial biosphere? Bull. Amer. Meteor. Soc., 98, 665671, https://doi.org/10.1175/BAMS-D-15-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reuter, M., and Coauthors, 2020: Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmos. Meas. Tech., 13, 789819, https://doi.org/10.5194/amt-13-789-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2015: The observed state of the water cycle in the early twenty-first century. J. Climate, 28, 82898318, https://doi.org/10.1175/JCLI-D-14-00555.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sathyendranath, S., and Coauthors, 2012: Ocean Colour Climate Change Initiative—Approach and initial results. IEEE Int. Geoscience and Remote Sensing Symp ., Munich, Germany, IEEE, 2024–2027, https://doi.org/10.1109/IGARSS.2012.6350979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, M., M. Lockhoff, J. Forsythe, H. Cronk, T. H. Vonder Haar, R. Bennartz, 2016: The GEWEX water vapor assessment: Results from intercomparison, trend, and homogeneity analysis of total column water vapor. J. Appl. Meteor. Climatol., 55, 16331649, https://doi.org/10.1175/JAMC-D-15-0304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, M., and Coauthors, 2018: The GEWEX water vapor assessment archive of water vapour products from satellite observations and reanalyses. Earth Syst. Sci. Data, 10, 10931117, https://doi.org/10.5194/essd-10-1093-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schröder, M., and Coauthors, 2019: The GEWEX water vapor assessment of global water vapour and temperature data records from satellites and reanalyses. Remote Sens ., 11, 251, https://doi.org/10.3390/RS11030251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2009: Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys., 9, 16871709, https://doi.org/10.5194/acp-9-1687-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siddans, R., 2016: S5P-NPP Cloud Processor ATBD. EUMETSAT Doc. S5P-NPPC-RAL-ATBD-0001, 41 pp., https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-NPP-ATBD-NPP-Clouds.

    • Search Google Scholar
    • Export Citation
  • Sogacheva, L., P. Kolmonen, T. H. Virtanen, E. Rodriguez, G. Saponaro, and G. de Leeuw, 2017: Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer. Atmos. Meas. Tech., 10, 491505, https://doi.org/10.5194/amt-10-491-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sogacheva, L., and Coauthors, 2020: Merging regional and global aerosol optical depth records from major available satellite products. Atmos. Chem. Phys., 20, 20312056, https://doi.org/10.5194/acp-20-2031-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, G., R. Kwok, and D. Menemenlis, 2011: Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett., 38, L19501, https://doi.org/10.1029/2011GL048970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., and Coauthors, 2019: Cloud_cci Advanced Very High Resolution Radiometer Post Meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties. Earth Syst. Sci. Data, 12, 4160, https://doi.org/10.5194/essd-12-41-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., F. Ardhuin, and F. Girard-Ardhuin, 2016: Wave climate in the Arctic 1992–2014: Seasonality and trends. Cryosphere, 10, 16051629, https://doi.org/10.5194/tc-10-1605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., and Coauthors, 2014: User manual and system documentation of WAVEWATCH III version 4.18. NOAA Tech. Note 316, 311 pp., https://polar.ncep.noaa.gov/waves/wavewatch/manual.v4.18.pdf.

    • Search Google Scholar
    • Export Citation
  • Vinogradova, N., and Coauthors, 2019: Satellite salinity observing system: Recent discoveries and the way forward. Front. Mar. Sci., 6, 243, https://doi.org/10.3389/fmars.2019.00243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and V. Eyring, 2008: Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos. Chem. Phys., 8, 56995713, https://doi.org/10.5194/acp-8-5699-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WGClimate, 2018: WGClimate ECV inventory gap analysis report v1.1. WGCL/REP/18/986356, 160 pp., http://ceos.org/document_management/Working_Groups/WGClimate/Documents/WGClimate_ECV-Inventory_Gap_Analysis_Report_v1.1.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 289 96
PDF Downloads 230 230 89

Consistency of Satellite Climate Data Records for Earth System Monitoring

View More View Less
  • 1 German Aerospace Center (DLR), Wessling, Germany
  • 2 University of Reading, Reading, United Kingdom
  • 3 Deutscher Wetterdienst, Offenbach, Germany
  • 4 Laboratory of Ocean Physics and Satellite Oceanography, IFREMER, Plouzané, France
  • 5 b.geos GmbH, Korneuburg, Austria
  • 6 Department of Geography, Ludwig-Maximilians-Universität, Munich, Germany
  • 7 Centre for Environmental Data Analysis, STFC Rutherford Appleton Laboratory, Harwell, and National Centre for Earth Observation, Harwell, United Kingdom
  • 8 Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Paris, France
  • 9 Brockmann Consult GmbH, Hamburg, Germany
  • 10 Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
  • 11 Environmental Remote Sensing, University of Alcalá, Alcalá de Henares, Spain
  • 12 IPSL–LSCE, Gif sur Yvette, France
  • 13 Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria
  • 14 National Centre for Earth Observation, Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
  • 15 Met Office Hadley Centre, Exeter, United Kingdom
  • 16 Norwegian Meteorological Institute, Oslo, Norway
  • 17 University of Reading, and National Centre for Earth Observation, University of Reading, Reading, United Kingdom
  • 18 LEGOS CNES, CNRS, IRD, Université de Toulouse, Toulouse, France
  • 19 Department of Geography, University of Zurich, Zurich, Switzerland
  • 20 School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
  • 21 Plymouth Marine Laboratory, Plymouth, United Kingdom
  • 22 Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria
  • 23 Deutscher Wetterdienst, Offenbach, Germany
  • 24 Plymouth Marine Laboratory, Plymouth, United Kingdom
  • 25 Swedish Hydrological and Meteorological Institute, Norrköping, Sweden
© Get Permissions
Restricted access

Abstract

Climate data records (CDRs) of essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: 1) consistency in format and metadata to facilitate their synergetic use (technical level); 2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within the CCI program are analyzed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it.

Corresponding author: Thomas Popp, thomas.popp@dlr.de

Abstract

Climate data records (CDRs) of essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: 1) consistency in format and metadata to facilitate their synergetic use (technical level); 2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within the CCI program are analyzed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it.

Corresponding author: Thomas Popp, thomas.popp@dlr.de
Save