• Abish, B., P. V. Joseph, and O. M. Johannessen, 2015: Climate change in the subtropical jetstream during 1950–2009. Adv. Atmos. Sci., 32, 140148, https://doi.org/10.1007/s00376-014-4156-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ágústsson, H., and H. Ólafsson, 2004: Mean gust factors in complex terrain. Meteor. Z., 13, 149155, https://doi.org/10.1127/0941-2948/2004/0013-0149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azam, M. F., P. Wagnon, C. Vincent, A. L. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal, 2014: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 8, 21952217, https://doi.org/10.5194/tc-8-2195-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertolani, L., M. Bollasina, and G. Tartari, 2000: Recent biennial variability of meteorological features in the eastern Highland Himalayas. Geophys. Res. Lett., 27, 21852188, https://doi.org/10.1029/1999GL011198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., 1996: The parameterization of shortwave and longwave radiative fluxes for use in zonally averaged climate models. J. Climate, 9, 439454, https://doi.org/10.1175/1520-0442(1996)009<0439:TPOSAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonasoni, P., and Coauthors, 2008: The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Sci. Total Environ., 391, 252261, https://doi.org/10.1016/j.scitotenv.2007.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., F. T. Keimig, H. F. Diaz, and D. R. Hardy, 2009: Recent changes in freezing level heights in the tropics with implications for the deglacierization of high mountain regions. Geophys. Res. Lett., 36, L17701, https://doi.org/10.1029/2009GL037712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, B. W., I. C. Willis, and M. J. Sharp, 2006: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J. Glaciol., 52, 281297, https://doi.org/10.3189/172756506781828746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., G. Casassa, and J. Quintana, 2005: Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century/Changements de l’isotherme 0°C et de la ligne d'équilibre des neiges dans le Chili central durant le dernier quart du 20ème siècle. Hydrol. Sci. J., 50, 948, https://doi.org/10.1623/hysj.2005.50.6.933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. M., J. P. Dallavalle, and H. R. Glahn, 1989: Statistical forecasts based on the National Meteorological Center’s numerical weather prediction system. Wea. Forecasting, 4, 401412, https://doi.org/10.1175/1520-0434(1989)004<0401:SFBOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Kok, R. J., J. F. Steiner, M. Litt, P. Wagnon, I. Koch, M. F. Azam, and W. W. Immerzeel, 2020: Measurements, models and drivers of incoming longwave radiation in the Himalaya. Int. J. Climatol., 40, 942956, https://doi.org/10.1002/joc.6249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor ., 7, 363372, https://doi.org/10.1007/BF00240838.

  • Firth, P. G., and Coauthors, 2008: Mortality on Mount Everest, 1921-2006: Descriptive study. BMJ, 337, a2654, https://doi.org/10.1136/bmj.a2654.

  • Gagne, D. J., II, A. McGovern, M. Coniglio, J. Correia Jr., and M. Xue, 2015: Day-ahead hail prediction integrating machine learning with storm-scale numerical weather models. 27th Conf. on IAAI, Austin, TX, Association for the Advancement of Artificial Intelligence, 3954–3960, www.aaai.org/ocs/index.php/IAAI/IAAI15/paper/view/9724.

  • Galvin, J. F. P., 2007: The weather and climate of the tropics part 2—The subtropical jet streams. Weather, 62, 295299, https://doi.org/10.1002/wea.65.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gautam, D., and S. Regmi, 2013: Recent trends in the onset and withdrawal of summer monsoon over Nepal. ECOPERSIA, 1, 353367, http://ecopersia.modares.ac.ir/article-24-11752-en.html.

    • Search Google Scholar
    • Export Citation
  • Hawley, E., and R. Salisbury, 2007: The Himalayan Database: The Expedition Archives of Elizabeth Hawley. American Alpine Club Press, 80 pp.

    • Search Google Scholar
    • Export Citation
  • Hock, R., 2005: Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr., 29, 362391, https://doi.org/10.1191/0309133305pp453ra.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. M., and H. R. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704, https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huss, M., and R. Hock, 2015: A new model for global glacier change and sea-level rise. Front. Earth Sci., 3, 54, https://doi.org/10.3389/feart.2015.00054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. Petersen, S. Ragettli, and F. Pellicciotti, 2014: The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50, 22122226, https://doi.org/10.1002/2013WR014506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., and Coauthors, 2020: Importance and vulnerability of the world’s water towers. Nature, 577, 364369, https://doi.org/10.1038/s41586-019-1822-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattel, D. B., T. Yao, K. Yang, L. Tian, G. Yang, and D. Joswiak, 2013: Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theor. Appl. Climatol., 113, 671682, https://doi.org/10.1007/s00704-012-0816-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayastha, R. B., T. Ohata, and Y. Ageta, 1999: Application of a mass-balance model to a Himalayan glacier. J. Glaciol., 45, 559567, https://doi.org/10.1017/S002214300000143X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and Coauthors, 2019: Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, P. Wester et al., Eds., Springer International Publishing, 57–97, https://doi.org/10.1007/978-3-319-92288-1_3.

    • Crossref
    • Export Citation
  • Lau, M. B., 1998: GeoPak: Monitoring climbers and climate on Mount Everest. M.S. thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 42 pp.

  • Litt, M., J. Shea, P. Wagnon, J. Steiner, I. Koch, E. Stigter, and W. Immerzeel, 2019: Glacier ablation and temperature indexed melt models in the Nepalese Himalaya. Sci. Rep., 9, 5264, https://doi.org/10.1038/s41598-019-41657-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locci, F., M. T. Melis, F. Dessì, P. Stocchi, M. O. Akinde, V. Bønes, P. Bonasoni, and E. Vuillermoz, 2014: Implementation of a webGIS service platform for high mountain climate research: The SHARE GeoNetwork project. Geosci. Data J., 1, 140157, https://doi.org/10.1002/gdj3.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDougall, A. H., and G. E. Flowers, 2011: Spatial and temporal transferability of a distributed energy-balance glacier melt model. J. Climate, 24, 14801498, https://doi.org/10.1175/2010JCLI3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meybeck, M., P. Green, and C. Vörösmarty, 2001: A new typology for mountains and other relief classes. Mt. Res. Dev., 21, 3445, https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, K. E., B. Hubbard, D. J. Quincey, E. S. Miles, T. C. Sherpa, A. V. Rowan, and S. H. Doyle, 2018: Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry. Sci. Rep., 8, 16825, https://doi.org/10.1038/s41598-018-34327-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2004: Mount Everest snow plume: A case study. Geophys. Res. Lett., 31, L22102, https://doi.org/10.1029/2004GL021046.

  • Moore, G. W. K., and J. L. Semple, 2004: High Himalayan meteorology: Weather at the South Col of Mount Everest. Geophys. Res. Lett., 31, L18109, https://doi.org/10.1029/2004GL020621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and J. L. Semple, 2006: Weather and death on Mount Everest: An analysis of the Into Thin Air storm. Bull. Amer. Meteor. Soc., 87, 465480, https://doi.org/10.1175/BAMS-87-4-465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and J. L. Semple, 2009: The impact of global warming on Mount Everest. High Alt. Med. Biol., 10, 383385, https://doi.org/10.1089/ham.2009.1039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and J. L. Semple, 2011: Freezing and frostbite on Mount Everest: New insights into wind chill and freezing times at extreme altitude. High Alt. Med. Biol., 12, 271275, https://doi.org/10.1089/ham.2011.0008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., J. L. Semple, P. Cristofanelli, P. Bonasoni, and P. Stocchi, 2012: Environmental conditions at the South Col of Mount Everest and their impact on hypoxia and hypothermia experienced by mountaineers. Extreme Physiol. Med., 1, 2, https://doi.org/10.1186/2046-7648-1-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountain Research Initiative EDW Working Group, 2015: Elevation-dependent warming in mountain regions of the world. Nat. Climate Change, 5, 424430, https://doi.org/10.1038/nclimate2563.

    • Search Google Scholar
    • Export Citation
  • Munro, D. S., 1990: Comparison of melt energy computations and ablatometer measurements on melting ice and snow. Arct. Alp. Res., 22, 153162, https://doi.org/10.2307/1551300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Geographic, 2019: Perpetual planet—Everest. Accessed 27 March 2020, www.nationalgeographic.org/projects/perpetual-planet/everest/.

  • Oke, T. R., 2009: Boundary Layer Climates. 2nd ed. Routledge, 464 pp.

  • Pellicciotti, F., T. Raschle, T. Huerlimann, M. Carenzo, and P. Burlando, 2011: Transmission of solar radiation through clouds on melting glaciers: A comparison of parameterizations and their impact on melt modelling. J. Glaciol., 57, 367381, https://doi.org/10.3189/002214311796406013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, W. T., and Coauthors, 2014: The Randolph Glacier inventory: A globally complete inventory of glaciers. J. Glaciol., 60, 537552, https://doi.org/10.3189/2014JoG13J176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, R., 2019: German, Spanish climbers eye toughest winter ascent on Mt Everest. Himalayan Times, 22 December.

  • Pratap, B., D. P. Dobhal, M. Mehta, and R. Bhambri, 2015: Influence of debris cover and altitude on glacier surface melting: A case study on Dokriani Glacier, central Himalaya, India. Ann. Glaciol., 56, 916, https://doi.org/10.3189/2015AoG70A971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radić, V., A. Bliss, A. C. Beedlow, R. Hock, E. Miles, and J. G. Cogley, 2014: Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn ., 42, 3758, https://doi.org/10.1007/s00382-013-1719-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rounce, D. R., O. King, M. McCarthy, D. E. Shean, and F. Salerno, 2018: Quantifying debris thickness of debris-covered glaciers in the Everest region of Nepal through inversion of a subdebris melt model. J. Geophys. Res. Earth Surf., 123, 10941115, https://doi.org/10.1029/2017JF004395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salerno, F., and Coauthors, 2015: Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). Cryosphere, 9, 12291247, https://doi.org/10.5194/tc-9-1229-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shea, J. M., W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya, 2015: Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere, 9, 11051128, https://doi.org/10.5194/tc-9-1105-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A., N. Lott, and R. Vose, 2011: The Integrated Surface Database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, https://doi.org/10.1175/2011BAMS3015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stigter, E. E., M. Litt, J. F. Steiner, P. N. J. Bonekamp, J. M. Shea, M. F. P. Bierkens, and W. W. Immerzeel, 2018: The importance of snow sublimation on a Himalayan glacier. Front. Earth Sci., 6, 108, https://doi.org/10.3389/feart.2018.00108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R., 2015: Practical Meteorology: An Algebra-Based Survey of Atmospheric Science. 1st ed. University of British Colombia, 938 pp.

  • Tonboe, R. T., G. Dybkjær, and J. L. Høyer, 2011: Simulations of the snow covered sea ice surface temperature and microwave effective temperature. Tellus, 63A, 10281037, https://doi.org/10.1111/j.1600-0870.2011.00530.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Broeke, M., D. van As, C. Reijmer, and R. van de Wal, 2004: Assessing and improving the quality of unattended radiation observations in Antarctica. J. Atmos. Oceanic Technol., 21, 14171431, https://doi.org/10.1175/1520-0426(2004)021<1417:AAITQO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., B. Fosu, R. R. Giles, and P. M. Singh, 2015: The deadly Himalayan snowstorm of October 2014: Synoptic conditions and associated trends [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S89S94, https://doi.org/10.1175/BAMS-D-15-00113.1.

    • Search Google Scholar
    • Export Citation
  • West, J. B., and Coauthors, 1983: Maximal exercise at extreme altitudes on Mount Everest. J. Appl. Physiol., 55, 688698, https://doi.org/10.1152/jappl.1983.55.3.688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheler, B. A., and G. E. Flowers, 2011: Glacier subsurface heat-flux characterizations for energy-balance modelling in the Donjek Range, southwest Yukon, Canada. J. Glaciol., 57, 121133, https://doi.org/10.3189/002214311795306709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., C. W. Dawson, C. Murphy, P. O’Connor, and E. Hawkins, 2014: The Statistical Downscaling Model–Decision Centric (SDSM-DC): Conceptual basis and applications. Climate Res ., 61, 259276, https://doi.org/10.3354/cr01254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, C. Schär, G. Müller, D. Folini, M. Schwarz, M. Z. Hakuba, and A. Sanchez-Lorenzo, 2017: The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data, 9, 601613, https://doi.org/10.5194/essd-9-601-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, F., 2019: Traffic jams are just one of the problems facing climbers on Everest. National Geographic, accessed 30 November 2019, www.nationalgeographic.com/adventure/2019/05/everest-season-deaths-controversy-crowding/.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 704 pp.

  • WMO, 2019: World Meteorological Organization’s World Weather and Climate Extremes Archive. Accessed 3 December 2019, https://wmo.asu.edu/content/world-meteorological-organization-global-weather-climate-extremes-archive.

  • Yang, X., T. Zhang, D. Qin, S. Kang, and X. Qin, 2011: Characteristics and changes in air temperature and glacier’s response on the north slope of Mt. Qomolangma (Mt. Everest). Arct. Antarct. Alp. Res., 43, 147160, https://doi.org/10.1657/1938-4246-43.1.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Q.-L., G.-Y. Ren, Y.-Q. Zhang, Y.-Y. Ren, X.-B. Sun, Y.-J. Zhan, A. B. Shrestha, and R. Krishnan, 2017: An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv. Climate Change Res., 8, 141147, https://doi.org/10.1016/j.accre.2017.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2059 2059 247
PDF Downloads 1686 1686 195

Going to Extremes: Installing the World’s Highest Weather Stations on Mount Everest

View More View Less
  • 1 Department of Geography and Environment, Loughborough University, Loughborough, United Kingdom
  • 2 Department of Geography and Planning, Appalachian State University, Boone, North Carolina
  • 3 International Centre for Integrated Mountain Development, Lalitpur, Nepal
  • 4 Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, Nepal
  • 5 International Centre for Integrated Mountain Development, Lalitpur, and Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, Nepal
  • 6 Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, Nepal
  • 7 National Geographic Society, Washington, D.C.
  • 8 Department of Geography and Planning, Appalachian State University, Boone, North Carolina
  • 9 National Geographic Society, Washington, D.C.
  • 10 Department of Hydrology and Meteorology, Kathmandu, Nepal
  • 11 Climate Change Institute, University of Maine, Orono, Maine and School of Earth and Climate Sciences, University of Maine, Orono, Maine
  • 12 Climate Change Institute, University of Maine, Orono, Maine
  • 13 State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, and Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
  • 14 International Centre for Integrated Mountain Development, Lalitpur, Nepal
  • 15 Central Department of Geology, Tribhuvan University, Kathmandu, Nepal
  • 16 Climate Change Institute, University of Maine, Orono, Maine
© Get Permissions
Restricted access

Abstract

As the highest mountain on Earth, Mount Everest is an iconic peak that offers an unrivalled natural platform for measuring ongoing climate change across the full elevation range of Asia’s water towers. However, Everest’s extreme environment challenges data collection, particularly on the mountain’s upper slopes, where glaciers accumulate mass and mountaineers are most exposed. Weather stations have operated on Everest before, including the world’s previous highest, but coverage has been sparse in space and time. Here we describe the installation of a network of five automatic weather stations (AWSs), including the two highest stations on Earth (8,430 and 7,945 m MSL) which greatly improves monitoring of this iconic mountain. We highlight sample applications of the new data, including an initial assessment of surface energy fluxes at Camp II (6,464 m MSL) and the South Col (7,945 m MSL), which suggest melt occurs at both sites, despite persistently below-freezing air temperatures. This analysis indicates that melt may even be possible at the 8,850 m MSL summit, and prompts a reevaluation of empirical temperature index models used to simulate glacier melt in the Himalayas that focus only on air temperature. We also provide the first evaluation of numerical weather forecasts at almost 8,000 m MSL and use of model output statistics to reduce forecast error, showcasing an important opportunity to improve climber safety on Everest. Looking forward, we emphasize the considerable potential of these freely available data for understanding weather and climate in the Himalayas and beyond, including tracking the behavior of upper-atmosphere winds, which the AWS network is uniquely positioned to monitor.

Corresponding author: T. Matthews, t.matthews@lboro.ac.uk

Abstract

As the highest mountain on Earth, Mount Everest is an iconic peak that offers an unrivalled natural platform for measuring ongoing climate change across the full elevation range of Asia’s water towers. However, Everest’s extreme environment challenges data collection, particularly on the mountain’s upper slopes, where glaciers accumulate mass and mountaineers are most exposed. Weather stations have operated on Everest before, including the world’s previous highest, but coverage has been sparse in space and time. Here we describe the installation of a network of five automatic weather stations (AWSs), including the two highest stations on Earth (8,430 and 7,945 m MSL) which greatly improves monitoring of this iconic mountain. We highlight sample applications of the new data, including an initial assessment of surface energy fluxes at Camp II (6,464 m MSL) and the South Col (7,945 m MSL), which suggest melt occurs at both sites, despite persistently below-freezing air temperatures. This analysis indicates that melt may even be possible at the 8,850 m MSL summit, and prompts a reevaluation of empirical temperature index models used to simulate glacier melt in the Himalayas that focus only on air temperature. We also provide the first evaluation of numerical weather forecasts at almost 8,000 m MSL and use of model output statistics to reduce forecast error, showcasing an important opportunity to improve climber safety on Everest. Looking forward, we emphasize the considerable potential of these freely available data for understanding weather and climate in the Himalayas and beyond, including tracking the behavior of upper-atmosphere winds, which the AWS network is uniquely positioned to monitor.

Corresponding author: T. Matthews, t.matthews@lboro.ac.uk
Save