• Abram, N. J., M. K. Gagan, M. T. McCulloch, J. Chappell, and W. S. Hantoro, 2003: Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301, 952955, https://doi.org/10.1126/science.1083841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Achuthavarier, D., and V. Krishnamurthy, 2011: Role of Indian and Pacific SST in Indian summer monsoon intraseasonal variability. J. Climate, 24, 29152930, https://doi.org/10.1175/2010JCLI3639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allison, E. H., and Coauthors, 2009: Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish ., 10, 173196, https://doi.org/10.1111/j.1467-2979.2008.00310.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., P. Liu, and S.-P. Xie, 2005a: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 41504167, https://doi.org/10.1175/JCLI3533.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Potemra, R. Murtugudde, and J. P. McCreary, 2005b: Effect of preconditioning on the extreme climate events in the tropical Indian Ocean. J. Climate, 18, 34503469, https://doi.org/10.1175/JCLI3494.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S.-P. Xie, J. P. McCreary, and R. Murtugudde, 2005c: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302319, https://doi.org/10.1175/JCLI-3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Climate, 20, 31643189, https://doi.org/10.1175/JCLI4156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Hafner, K. P. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South Asia. J. Climate, 26, 27012718, https://doi.org/10.1175/JCLI-D-12-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., B. Taguchi, J. P. McCreary, M. Nagura, and T. Miyama, 2017: Systematic errors in South Asian monsoon simulation: Importance of equatorial Indian Ocean processes. J. Climate, 30, 81598178, https://doi.org/10.1175/JCLI-D-16-0573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, https://doi.org/10.1029/2001GL013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, https://doi.org/10.1029/2003GL017926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barange, M., and Coauthors, 2014: Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Climate Change, 4, 211216, https://doi.org/10.1038/nclimate2119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., W. P. De Ruijter, A. Biastoch, and R. Zahn, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, https://doi.org/10.1038/nature09983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., V. Hormann, R. Lumpkin, and G. R. Foltz, 2013: The response of the surface circulation of the Arabian Sea to monsoonal forcing. J. Phys. Oceanogr., 43, 20082022, https://doi.org/10.1175/JPO-D-13-033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., J. Vialard, and M. K. Roxy, 2019: IndOOS-2: A roadmap to sustained observations of the Indian Ocean for 2020-2030. CLIVAR Rep. CLIVAR-4/2019, 206 pp., https://doi.org/10.36071/clivar.rp.4.2019.

    • Crossref
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327330, https://doi.org/10.1029/2000GL011451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 120, https://doi.org/10.4319/lo.1997.42.1.0001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bopp, L., and Coauthors, 2013: Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 62256245, https://doi.org/10.5194/bg-10-6225-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 (2), 7989, https://doi.org/10.5670/oceanog.1991.07.

  • Bryden, H. L., and L. M. Beal, 2001: Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes. Deep-Sea Res. I, 48, 18211845, https://doi.org/10.1016/S0967-0637(00)00111-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, J. M., B. Subrahmanyam, E. S. Nyadjro, and V. S. N. Murty, 2016: Tropical cyclone activity over the southwest tropical Indian Ocean. J. Geophys. Res. Oceans, 121, 63896402, https://doi.org/10.1002/2016JC011992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Centurioni, L., A. Horanyi, C. Cardinali, E. Charpentier, and R. Lumpkin, 2017: A global ocean observing system for measuring sea level atmospheric pressure: Effects and impacts on numerical weather prediction. Bull. Amer. Meteor. Soc., 98, 231238, https://doi.org/10.1175/BAMS-D-15-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., W. Han, Y. Li, D. Wang, and M. McPhaden, 2015: Seasonal-to-interannual time scale dynamics of the equatorial undercurrent in the Indian Ocean. J. Phys. Oceanogr., 45, 15321553, https://doi.org/10.1175/JPO-D-14-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 2003: Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30, 1399, https://doi.org/10.1029/2002GL016673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2019: Extremes, abrupt changes and managing risks. IPCC Special Report on Oceans and Cryosphere in a Changing Climate, portner et al., Eds., Cambridge University Press, 589655.

    • Search Google Scholar
    • Export Citation
  • Currie, J. C., M. Lengaigne, J. Vialard, D. M. Kaplan, O. Aumont, S. W. A. Naqvi, and O. Maury, 2013: Indian Ocean dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, 10, 66776698, https://doi.org/10.5194/bg-10-6677-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbruyères, D., E. L. McDonagh, B. A. King, and V. Thierry, 2017: Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate, 30, 1985–1997, https://doi.org/10.1175/JCLI-D-16-0396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doi, T., A. Storto, S. K. Behera, A. Navarra, and T. Yamagata, 2017: Improved prediction of the Indian Ocean dipole mode by use of subsurface ocean observations. J. Climate, 30, 79537970, https://doi.org/10.1175/JCLI-D-16-0915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30, 19711983, https://doi.org/10.1175/JCLI-D-16-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn ., 42, 203217, https://doi.org/10.1007/s00382-013-1722-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • do Rosário Gomes, H., J. I. Goes, S. P. Matondkar, E. J. Buskey, S. Basu, S. Parab, and P. Thoppil, 2014: Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nat. Commun., 5, 4862, https://doi.org/10.1038/ncomms5862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drushka, K., J. Sprintall, S. Gille, and S. Wijffels, 2012: In situ observations of Madden–Julian oscillation mixed layer dynamics in the Indian and western Pacific Oceans. J. Climate, 25, 23062328, https://doi.org/10.1175/JCLI-D-11-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, https://doi.org/10.1038/nature07234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2007: Quasi-equilibrium dynamics of the tropical atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 186218.

    • Search Google Scholar
    • Export Citation
  • Feng, M., Y. Li, and G. Meyers, 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and Coauthors, 2020: Tracking air–sea exchange and upper ocean variability in the Indonesian–Australian Basin during the onset of the 2018/19 Australian summer monsoon. Bull. Amer. Meteor. Soc., 101, E1397E1412, https://doi.org/10.1175/BAMS-D-19-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, https://doi.org/10.1002/qj.49709540409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fonteneau, A., V. Lucas, E. Tewkai, A. Delgado, and H. Demarcq, 2008: Mesoscale exploitation of a major tuna concentration in the Indian Ocean. Aquat. Living Resour., 21, 109121, https://doi.org/10.1051/alr:2008028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C., M. D. Dettinger, J. C. Michaelsen, J. P. Verdin, M. E. Brown, M. Barlow, and A. Hoell, 2008: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA, 105, 11 08111 086, https://doi.org/10.1073/pnas.0708196105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and S. Gadgil, 2006: The Indian monsoon, GDP, and agriculture. Econ. Political Wkly ., 41, 48874895.

  • Gentemann, C. L., F. J. Wentz, M. Brewer, K. Hilburn, and D. Smith, 2010: Passive microwave remote sensing of the ocean: An overview. Oceanography from Space, V. Barale, J. Gower, and L. Alberotanza, Eds., Springer, 1944, https://doi.org/10.1007/978-90-481-8681-5_22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, https://doi.org/10.1126/science.1089357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., J. Joseph, N. P. Thangaprakash, P. Vijay, and M. J. McPhaden, 2017: Mixed layer temperature budget for the northward propagating summer monsoon intraseasonal oscillation (MISO) in the central Bay of Bengal. J. Geophys. Res. Oceans, 122, 88418854, https://doi.org/10.1002/2017JC013073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopika, S., T. Izumo, J. Vialard, M. Lengaigne, I. Suresh, and M. R. Ramesh Kumar, 2020: Aliasing of the Indian Ocean anthropogenic warming spatial pattern by natural climate variability. Climate Dyn ., 54, 10931111, https://doi.org/10.1007/s00382-019-05049-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability in the Atmosphere-Ocean Climate System, Springer, 1961.

  • Gould, J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85, 185191, https://doi.org/10.1029/2004EO190002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, W. W., and C. S. Rousseaux, 2019: Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett., 14, 124011, https://doi.org/10.1088/1748-9326/ab4667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., S. Corti, J. Garcia-Serrano, F. J. Doblas-Reyes, M. Balmaseda, and L. Magnusson, 2013: The Indian Ocean: The region of highest skill worldwide in decadal climate prediction. J. Climate, 26, 726739, https://doi.org/10.1175/JCLI-D-12-00049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., M. Lengaigne, J. Vialard, D. M. Kaplan, O. Aumont, S. W. A. Naqvi, and O. Maury, 2014: Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nat. Climate Change, 4, 782785, https://doi.org/10.1038/nclimate2307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014a: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn ., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. de Ruijter, 2014b: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2019: Impacts of basin-scale climate modes on coastal sea level: A review. Surv. Geophys., 40, 14931541, https://doi.org/10.1007/s10712-019-09562-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. W. Hurrell, T. Xu, G. Bates, and A. Phillips, 2004: Twentieth century north Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn ., 23, 391405, https://doi.org/10.1007/s00382-004-0433-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. Eischeid, J. Perlwitz, X. Quan, T. Zhang, and P. Pegion, 2012: On the increased frequency of Mediterranean drought. J. Climate, 25, 21462161, https://doi.org/10.1175/JCLI-D-11-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, R. R., L. E. B. Beckley, and J. D. Wiggert, 2017: Biogeochemical and ecological impacts of boundary currents in the Indian Ocean. Prog. Oceanogr., 156, 290325, https://doi.org/10.1016/j.pocean.2017.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horii, T., H. Hase, I. Ueki, and Y. Masumoto, 2008: Oceanic precondition and evolution of the 2006 Indian Ocean dipole. Geophys. Res. Lett., 35, L03607, https://doi.org/10.1029/2007GL032464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2017: Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification. Geophys. Res. Lett., 44, 14481456, https://doi.org/10.1002/2016GL072494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2019: Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Climate Change, 9, 747751, https://doi.org/10.1038/s41558-019-0566-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International CLIVAR Project Office, 2006: Understanding the role of the Indian Ocean in the climate system——Implementation plan for sustained observations. CLIVAR Publ. 100, 76 pp.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324

    • Search Google Scholar
    • Export Citation
  • Izumo, T., C. B. Montégut, J.-J. Luo, S. K. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21, 56035623, https://doi.org/10.1175/2008JCLI2158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year's El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, S., L. A. Joseph, and J. Lingala, 2019: On the super cyclonic storm “Kyarr” currently active in the Arabian Sea. IIOE-2 Newsletter, No. 3, Indian National Centre for Ocean Information Services, Hyderabad, India, 1–2.

    • Search Google Scholar
    • Export Citation
  • Kataoka, T., T. Tozuka, S. K. Behera, and T. Yamagata, 2014: On the Ningaloo Niño/Niña. Climate Dyn ., 43, 14631482, https://doi.org/10.1007/s00382-013-1961-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 94259443, https://doi.org/10.1175/JCLI-D-18-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M., 2014: Priorities for installation of continuous global navigation satellite system (GNSS) near to tide gauges. University of Tasmania Tech. Rep., 20 pp., https://doi.org/10.13140/RG.2.1.1781.7049.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L'Hégaret, P., L. M. Beal, S. Elipot, and L. Laurindo, 2018: Shallow cross-equatorial gyres of the Indian Ocean driven by seasonally reversing monsoon winds. J. Geophys. Res. Oceans, 123, 89028920, https://doi.org/10.1029/2018JC014553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I. I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Y. Tang, D. Chen, and T. Lian, 2017: Predictability of the Indian Ocean dipole in the coupled models. Climate Dyn ., 48, 20052024, https://doi.org/10.1007/s00382-016-3187-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., M. Feng, D. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian Throughflow transport: A revisit based on 30-year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., S. P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7, 10926, https://doi.org/10.1038/ncomms10926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005-2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02, https://doi.org/10.1029/2007GL032793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F. F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., R. Murtugudde, J. Vialard, P. N. Vinayachandran, J. D. Wiggert, R. R. Hood, D. Shankar, and S. Shetye, 2009: Biophysical processes in the Indian Ocean. Indian Ocean Biogeochemical Processes and Ecological Variability, Geophys. Monogr., Vol. 185, Amer. Geophys. Union, 932, https://doi.org/10.1029/2008GM000768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonagh, E. L., H. L. Bryden, B. A. King, and R. J. Sanders, 2008: The circulation of the Indian Ocean at 32°S. Prog. Oceanogr., 79, 2036, https://doi.org/10.1016/j.pocean.2008.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and M. Nagura, 2014: Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dyn ., 42, 15691586, https://doi.org/10.1007/s00382-013-1765-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2010: The Global Tropical Moored Buoy Array. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society Conf ., Venice, Italy, ESA, https://doi.org/10.5270/OceanObs09.cwp.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., Y. Wang, and M. Ravichandran, 2015: Volume transports of the Wyrtki jets and their relationship to the Indian Ocean dipole. J. Geophys. Res. Oceans, 120, 53025317, https://doi.org/10.1002/2015JC010901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, M., and Coauthors, 2009: The Global Sea Level Observing System (GLOSS). Proc. OceanObs’09: Sustained Ocean Observations and Information for Society Conf., Venice, Italy, ESA, https://doi.org/10.5270/OceanObs09.cwp.63.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño-southern oscillation. J. Geophys. Res. Oceans, 101, 12 255-12 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morioka, Y., T. Tozuka, and T. Yamagata, 2013: How is the Indian Ocean subtropical dipole excited? Climate Dyn ., 41, 19551968, https://doi.org/10.1007/s00382-012-1584-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. A. Vecchi, and S. Underwood, 2017: Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat. Climate Change, 7, 885889, https://doi.org/10.1038/s41558-017-0008-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. P. McCreary Jr., and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105, 32953306, https://doi.org/10.1029/1999JC900294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010: Wyrtki jet dynamics: Seasonal variability. J. Geophys. Res., 115, C07009, https://doi.org/10.1029/2009JC005922.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2012: The dynamics of wind-driven intraseasonal variability in the equatorial Indian Ocean. J. Geophys. Res., 117, C02001, https://doi.org/10.1029/2011JC007405.

    • Search Google Scholar
    • Export Citation
  • Naqvi, S. W. A., and Coauthors, 2009: Seasonal anoxia over the western Indian continental shelf. Indian Ocean Biogeochemical Processes and Ecological Variability, Geophys. Monogr., Vol. 185, Amer. Geophys. Union, 333345, https://doi.org/10.1029/2008GM000745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Needham, H. F., B. D. Keim, and D. Sathiaraj, 2015: A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Rev. Geophys., 53, 545591, https://doi.org/10.1002/2014RG000477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, J. Vialard, G. Samson, S. Masson, K. S. Krishnamohan, and I. Suresh, 2019: Premonsoon/postmonsoon Bay of Bengal tropical cyclones intensity: Role of air-sea coupling and large-scale background state. Geophys. Res. Lett., 46, 21492157, https://doi.org/10.1029/2018GL081132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. Nicholls, 2015: Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLOS ONE, 10, e0118571, https://doi.org/10.1371/journal.pone.0118571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, T. Izumo, A. S. Unnikrishnan, B. Meyssignac, B. Hamlington, and C. de Boyer Montegu, 2017: Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean. Geophys. Res. Lett., 44, 73917400, https://doi.org/10.1002/2017GL073955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieves, V., J. K. Willis, and W. C. Patzert, 2015: Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, 349, 532535, https://doi.org/10.1126/science.aaa4521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E. C., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parvathi, V., and Coauthors, 2017: Positive Indian Ocean dipole events prevent anoxia along the west coast of India. Biogeosciences, 14, 15411559, https://doi.org/10.5194/bg-14-1541-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasanna Kumar, S., P. M. Muraleedharan, T. G. Prasad, M. Gauns, N. Ramaiah, S. N. de Souza, S. Sardesai, and M. Madhupratap, 2002: Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophys. Res. Lett., 29, 2235, https://doi.org/10.1029/2002GL016013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., C. K. Unnikrishnan, and B. Preethi, 2012: Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer. Climate Dyn ., 38, 22572274, https://doi.org/10.1007/s00382-011-1061-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Srinivasan, K. N. Kumar, C. Gnanaseelan, and M. M. Ali, 2013: On the epochal variation of intensity of tropical cyclones in the Arabian Sea. Atmos. Sci. Lett., 14, 249255, https://doi.org/10.1002/asl2.447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., A. R. Dhakate, S. K. Saha, S. Mahapatra, H. S. Chaudhari, S. Pokhrel, and S. K. Sahu, 2012: Why is Indian Ocean warming consistently? Climatic Change, 110, 709719, https://doi.org/10.1007/s10584-011-0121-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., 2001: Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett., 28, 22252227, https://doi.org/10.1029/2000GL012735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Resplandy, L., M. Lévy, L. Bopp, V. Echevin, S. Pous, V. V. S. S. Sarma, and D. Kumar, 2012: Controlling factors of the oxygen balance in the Arabian Sea’s OMZ. Biogeosciences, 9, 50955109, https://doi.org/10.5194/bg-9-5095-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., M. D. Palmer, R. P. Allan, D. G. Desbruyeres, P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophys. Res. Oceans, 122, 726744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, R. R., A. S. Taschetto, A. S. Gupta, and G. R. Foltz, 2019: Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci ., 12, 620626, https://doi.org/10.1038/s41561-019-0393-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, https://doi.org/10.2151/jmsj.85.349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, and S. Masson, 2014: The curious case of Indian Ocean warming. J. Climate, 27, 85018509, https://doi.org/10.1175/JCLI-D-14-00471.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., and Coauthors, 2016: A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett., 43, 826833, https://doi.org/10.1002/2015GL066979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. Zhang, and D. Kim, 2019: Twofold expansion of Indo-Pacific warm pool warps MJO lifecycle. Nature, 575, 647651, https://doi.org/10.1038/s41586-019-1764-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S. K., A. Hazra, S. Pokhrel, H. S. Chaudhari, K. Sujith, A. Rai, H. Rahaman, and B. N. Goswami, 2019: Unraveling the mystery of Indian summer monsoon prediction: Improved estimate of predictability limit. J. Geophys. Res. Atmos., 124, 19621974, https://doi.org/10.1029/2018JD030082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarma, V. V. S. S., and Coauthors, 2016: Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal. Oceanography, 29, 222231, https://doi.org/10.5670/oceanog.2016.54.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., L. Stramma, and M. Visbeck, 2017: Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335339, https://doi.org/10.1038/nature21399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, A. F., and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, A. F., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, https://doi.org/10.1016/S0079-6611(02)00039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, A. F., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. R. Goddalehundi, and D. S. Anitha, 2008: Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos. Sci. Lett., 9, 16, https://doi.org/10.1002/asl.162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. C. Subramanian, A. J. Miller, and N. R. Cavanaugh, 2014: Coupled impacts of the diurnal cycle of sea surface temperature on the Madden–Julian oscillation. J. Climate, 27, 84228443, https://doi.org/10.1175/JCLI-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., D. Shankar, and S. R. Shetye, 2002: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res., 107, 3052, https://doi.org/10.1029/2000JC000679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18, 26282636, https://doi.org/10.1175/JCLI3432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Strutton, P. G., V. J. Coles, R. R. Hood, R. J. Matear, M. J. McPhaden, and H. E. Phillips, 2015: Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition. Biogeosciences, 12, 23672382, https://doi.org/10.5194/bg-12-2367-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Subramanian, A., and Coauthors, 2019: Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Front. Mar. Sci., 6, 427, https://doi.org/10.3389/fmars.2019.00427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2002: Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 16011622, https://doi.org/10.1016/S0967-0645(02)00003-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and Coauthors, 2016: Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography. Ann. Rev. Mar. Sci., 8, 185215, https://doi.org/10.1146/annurev-marine-052915-100829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanizaki, C., T. Tozuka, T. Doi, and T. Yamagata, 2017: Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean dipole and its implication for predictability. Climate Dyn ., 49, 12891304, https://doi.org/10.1007/s00382-016-3382-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. Sen Gupta, H. H. Hendon, C. C. Ummenhofer, and M. H. England, 2011: The relative contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J. Climate, 24, 37343747, https://doi.org/10.1175/2011JCLI3885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. R., C. G. Piecuch, M. A. Merrifield, J. P. McCreary, and E. Firing, 2016: Forcing of recent decadal variability in the equatorial and North Indian Ocean. J. Geophys. Res. Oceans, 121, 67626778, https://doi.org/10.1002/2016JC012132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S. P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Kataoka, and T. Yamagata, 2014: Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Climate Dyn ., 43, 21972205, https://doi.org/10.1007/s00382-013-2044-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, P. C. McIntosh, G. A. Meyers, M. J. Pook, J. S. Risbey, A. S. Gupta, and A. S. Ta, 2009: What causes Southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706, https://doi.org/10.1029/2008GL036801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Biastoch, and C. W. Böning, 2017: Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Climate, 30, 17391751, https://doi.org/10.1175/JCLI-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unnikrishnan, A. S., A. G. Nidheesh, and M. Lengaigne, 2015: Sea-level-rise trends off the Indian coasts during the last two decades. Curr. Sci., 108, 966971.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., G. R. Foltz, M. J. McPhaden, J. P. Duvel, and C. de Boyer Montégut, 2008: Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian oscillation in late 2007 and early 2008. Geophys. Res. Lett., 35, L19608, https://doi.org/10.1029/2008GL035238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009: Cirene: Air–sea interactions in the Seychelles–Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4562, https://doi.org/10.1175/2008BAMS2499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. Jayakumar, C. Gnanaseelan, M. Lengaigne, D. Sengupta, and B. N. Goswami, 2012: Processes of 30-90 day sea surface temperature variability in the northern Indian Ocean during boreal summer. Climate Dyn ., 38, 19011916, https://doi.org/10.1007/s00382-011-1015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., K. Drushka, H. Bellenger, M. Lengaigne, S. Pous, and J. P. Duvel, 2013: Understanding Madden-Julian-induced sea surface temperature variations in the north western Australian Basin. Climate Dyn ., 41, 32033218, https://doi.org/10.1007/s00382-012-1541-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., K. A. Emanuel, M. Lengaigne, J. Vialard, and G. Madec, 2014: Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6, 680699, https://doi.org/10.1002/2014MS000327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, L., G. Meyers, S. Wijffels, and L. Pigot, 2008: Change in the Indonesian Throughflow with the climatic shift of 1976/77. Geophys. Res. Lett., 35, L03604, https://doi.org/10.1029/2007GL031911.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled oceanic–atmospheric dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernberg, T., and Coauthors, 2016: Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169172, https://doi.org/10.1126/science.aad8745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiggert, J. D., J. Vialard, and M. J. Behrenfeld, 2009: Basin-wide modification of dynamical and biogeochemical processes by the Indian Ocean dipole during the SeaWiFS era. Indian Ocean Biogeochemical Processes and Ecological Variability, Geophys. Monogr., Vol. 185, Amer. Geophys. Union, 385408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and Coauthors, 2016: ASIRI: An ocean–atmosphere initiative for Bay of Bengal. Bull. Amer. Meteor. Soc., 97, 18591884, https://doi.org/10.1175/BAMS-D-14-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., G. Meyers, and J. S. Godfrey, 2008: A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr., 38, 19651978, https://doi.org/10.1175/2008JPO3987.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wojtasiewicz, B., and Coauthors, 2020: Autonomous profiling float observations reveal the dynamics of deep biomass distributions in the denitrifying oxygen minimum zone of the Arabian Sea. J. Mar. Syst., 207, 103103, https://doi.org/10.1016/j.jmarsys.2018.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. A. Balmaseda, 2007: The role of the ocean in the Madden–Julian oscillation: Implications for MJO prediction. Quart. J. Roy. Meteor. Soc., 133, 117128, https://doi.org/10.1002/qj.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., and Coauthors, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189211.

    • Search Google Scholar
    • Export Citation
  • Yokoi, T., T. Tozuka, and T. Yamagata, 2012: Seasonal and interannual variations of the SST above the Seychelles Dome. J. Climate, 25, 800814, https://doi.org/10.1175/JCLI-D-10-05001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. M. Rienecker, 1999: Mechanisms for the Indian Ocean warming during the 1997-1998 El Niño. Geophys. Res. Lett., 26, 735738, https://doi.org/10.1029/1999GL900072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and M. J. McPhaden, 2011: Ocean preconditioning of Cyclone Nargis in the Bay of Bengal: Interaction between Rossby waves, surface fresh waters, and sea surface temperatures. J. Phys. Oceanogr., 41, 17411755, https://doi.org/10.1175/2011JPO4437.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2007: Annual, seasonal, and interannual variability of air–sea heat fluxes in the Indian Ocean. J. Climate, 20, 31903209, https://doi.org/10.1175/JCLI4163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yun, Q., and Coauthors, 2019: Upper ocean response to the Super Tropical Cyclone Phailin (2013) over the freshwater region of the Bay of Bengal. J. Phys. Oceanogr., 49, 12011228, https://doi.org/10.1175/JPO-D-18-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, Y., M. Feng, Y. Du, H. E. Phillips, N. L. Bindoff, and M. J. McPhaden, 2018: Strengthened Indonesian Throughflow drives decadal warming in the southern Indian Ocean. Geophys. Res. Lett., 45, 61676175, https://doi.org/10.1029/2018GL078265.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., A. Rountrey, M. Feng, S.-P. Xie, D. Dissard, K. Rankenburg, J. M. Lough, and M. T. McCulloch, 2014: Corals record long-term Leeuwin Current variability including Ningaloo Niño/Niña since 1795. Nat. Commun., 5, 3607, https://doi.org/10.1038/ncomms4607.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 652 652 299
PDF Downloads 419 419 174

A Road Map to IndOOS-2: Better Observations of the Rapidly Warming Indian Ocean

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • 2 Institut de Recherche pour le Développement, Sorbonne Universités (UPMC, Université Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, IPSL, Paris, France
  • 3 Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, Maharashtra, India
  • 4 International CLIVAR Project Office, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
  • 5 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 6 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 7 Centre for Southern Hemisphere Oceans Research, Hobart, Tasmania, and Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Crawley, Western Australia, Australia
  • 8 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • 9 University of Maryland Center for Environmental Science, Cambridge, Maryland
  • 10 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • 11 Institut de Recherche pour le Développement, Sorbonne Universités (UPMC, Université Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, IPSL, Paris, France
  • 12 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • 13 The University of Tokyo, Tokyo, and Application Laboratory, JAMSTEC, Yokohama, Japan
  • 14 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • 15 National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa, India
  • 16 Texas A&M University, Corpus Christi, Texas
  • 17 Centre for Southern Hemisphere Oceans Research, Hobart, Tasmania, and Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Crawley, Western Australia, Australia
  • 18 Institute for Marine and Antarctic Studies, University of Tasmania, and Australian Research Council Centre of Excellence for Climate Extremes, Hobart, Tasmania, Australia
  • 19 Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
  • 20 The University of Tokyo, Tokyo, Japan
  • 21 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 22 National Institute of Oceanography, Council of Scientific and Industrial Research, Goa, India
  • 23 University of Southern Mississippi, Hattiesburg, Mississippi
  • 24 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 25 International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
  • 26 Ifremer, University of Brest, CNRS, IRD, Laboratoire d’Océanographie Physique et Spatiale, IUEM, Brest, France
  • 27 Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
© Get Permissions
Restricted access

Abstract

The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.

Corresponding author: J. Vialard, jerome.vialard@ird.fr

Abstract

The Indian Ocean Observing System (IndOOS), established in 2006, is a multinational network of sustained oceanic measurements that underpin understanding and forecasting of weather and climate for the Indian Ocean region and beyond. Almost one-third of humanity lives around the Indian Ocean, many in countries dependent on fisheries and rain-fed agriculture that are vulnerable to climate variability and extremes. The Indian Ocean alone has absorbed a quarter of the global oceanic heat uptake over the last two decades and the fate of this heat and its impact on future change is unknown. Climate models project accelerating sea level rise, more frequent extremes in monsoon rainfall, and decreasing oceanic productivity. In view of these new scientific challenges, a 3-yr international review of the IndOOS by more than 60 scientific experts now highlights the need for an enhanced observing network that can better meet societal challenges, and provide more reliable forecasts. Here we present core findings from this review, including the need for 1) chemical, biological, and ecosystem measurements alongside physical parameters; 2) expansion into the western tropics to improve understanding of the monsoon circulation; 3) better-resolved upper ocean processes to improve understanding of air–sea coupling and yield better subseasonal to seasonal predictions; and 4) expansion into key coastal regions and the deep ocean to better constrain the basinwide energy budget. These goals will require new agreements and partnerships with and among Indian Ocean rim countries, creating opportunities for them to enhance their monitoring and forecasting capacity as part of IndOOS-2.

Corresponding author: J. Vialard, jerome.vialard@ird.fr
Save