Histogram Anomaly Time Series: A Compact Graphical Representation of Spatial Time Series Data Sets

Gerald L Potter Center for Climate Simulation, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald L Potter in
Current site
Google Scholar
PubMed
Close
,
George J. Huffman Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by George J. Huffman in
Current site
Google Scholar
PubMed
Close
,
David T. Bolvin Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, and Science Systems and Applications Inc., Greenbelt, Maryland

Search for other papers by David T. Bolvin in
Current site
Google Scholar
PubMed
Close
,
Michael G. Bosilovich Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael G. Bosilovich in
Current site
Google Scholar
PubMed
Close
,
Judy Hertz Center for Climate Simulation, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Judy Hertz in
Current site
Google Scholar
PubMed
Close
, and
Laura E. Carriere Center for Climate Simulation, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Laura E. Carriere in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

We introduce a simple method for detecting changes, both transient and persistent, in reanalysis and merged satellite products due to both natural climate variability and changes to the data sources/analyses used as input. This note demonstrates this Histogram Anomaly Time Series (HATS) method using tropical ocean daily precipitation from MERRA-2 and from GPCP One-Degree Daily (1DD) precipitation estimates. Rather than averaging over space or time, we create a time series display of histograms for each increment of data (such as a day or month). Regional masks such as land–ocean can be used to isolate particular domains. While the histograms reveal subtle structures in the time series, we can amplify the signal by computing the histogram’s anomalies from its climatological seasonal cycle. The qualitative analysis provided by this scheme can then form the basis for more quantitative analyses of specific features, both real and analysis induced. As an example, in the tropical oceans the analysis clearly identifies changes in the time series of both reanalysis and observations that may be related to changing inputs.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: George J. Huffman, george.j.huffman@nasa.gov

ABSTRACT

We introduce a simple method for detecting changes, both transient and persistent, in reanalysis and merged satellite products due to both natural climate variability and changes to the data sources/analyses used as input. This note demonstrates this Histogram Anomaly Time Series (HATS) method using tropical ocean daily precipitation from MERRA-2 and from GPCP One-Degree Daily (1DD) precipitation estimates. Rather than averaging over space or time, we create a time series display of histograms for each increment of data (such as a day or month). Regional masks such as land–ocean can be used to isolate particular domains. While the histograms reveal subtle structures in the time series, we can amplify the signal by computing the histogram’s anomalies from its climatological seasonal cycle. The qualitative analysis provided by this scheme can then form the basis for more quantitative analyses of specific features, both real and analysis induced. As an example, in the tropical oceans the analysis clearly identifies changes in the time series of both reanalysis and observations that may be related to changing inputs.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: George J. Huffman, george.j.huffman@nasa.gov
Save
  • Adler, R., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. Mcgavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, G. L., L. Carriere, J. Hertz, M. Bosilovich, D. Duffy, T. Lee, and D. N. Williams, 2018: Enabling reanalysis research using the Collaborative Reanalysis Technical Environment (CREATE). Bull. Amer. Meteor. Soc., 99, 677687, https://doi.org/10.1175/BAMS-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217, https://doi.org/10.1175/2011JCLI4227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savitzky, A., and M. J. E. Golay, 1964: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 16271639, https://doi.org/10.1021/ac60214a047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., D. Waliser, R. Ferraro, P. Gleckler, T. Lee, and G. Potter, 2014: Satellite observations for CMIP5: The genesis of Obs4MIPs. Bull. Amer. Meteor. Soc., 95, 13291334, https://doi.org/10.1175/BAMS-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, https://doi.org/10.1002/2013MS000276.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 0 0
Full Text Views 6832 5556 2872
PDF Downloads 1317 205 37