• Akan Ç., J. C. McWilliams, S. Moghimi, and H. T. Özkan-Haller, 2018: Frontal dynamics at the edge of the Columbia River plume. Ocean Modell ., 122, 112, https://doi.org/10.1016/j.ocemod.2017.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akella, S. and C. Gentemann, 2019: GMAO research brief: Saildrone Baja field campaign: A comparison of surface meteorology with GEOS products. NASA Rep. GSFC-E-DAA-TN71693, 15 pp.

    • Search Google Scholar
    • Export Citation
  • Blough, N. V., and R. del Vecchio, 2002: Chromophoric DOM in the coastal environment. Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, Eds., Academic Press, 509546.

    • Search Google Scholar
    • Export Citation
  • Bowen, B. M., 2005: Improved wind and turbulence measurements using low cost 3-D sonic anemometers at a low wind site. 13th Symp. on Meteorological Observations and Instrumentation, Savannah, GA, Amer. Meteor. Soc., 7.4., https://ams.confex.com/ams/15AppClimate/techprogram/paper_91957.htm.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., R. C. Beardsley, J. Paduan, R. Limeburner, M. Caruso, and J. G. Sires, 2000: A view of the 1993–1994 California Current based on surface drifters, floats, and remotely sensed data. J. Geophys. Res.: Oceans, 105, 85758604, https://doi.org/10.1029/1999JC900327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., and W. J. Shaw, 1984: The response of the marine boundary layer to mesoscale variations in sea-surface temperature. Dyn. Atmos. Oceans, 8, 267281, https://doi.org/10.1016/0377-0265(84)90012-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelao, R. M., T. P. Mavor, J. A. Barth, and L. C. Breaker, 2006: Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res., 111, C09026, https://doi.org/10.1029/2006JC003541.

    • Search Google Scholar
    • Export Citation
  • Castro, S. L., L. A. Monzon, G. A. Wick, R. D. Lewis, and G. Beylkin, 2018: Subpixel variability and quality assessment of satellite sea surface temperature data using a novel high resolution multistage spectral interpolation (HRMSI) technique. Remote Sens. Environ., 217, 292308, https://doi.org/10.1016/j.rse.2018.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chant, R., 2011: Interactions between estuaries and coasts: River plumes their formation, transport, and dispersal. Treatise on Estuarine and Coastal Science, E. Wolanski and D. McLusky, Eds., Academic Press, 213235.

    • Search Google Scholar
    • Export Citation
  • Checkley, D. M., Jr., and J. A. Barth, 2009: Patterns and processes in the California Current System. Prog. Oceanogr., 83, 4964, https://doi.org/10.1016/j.pocean.2009.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, R. T., and J. W. Gartner, 1984: Tides, tidal and residual currents in San Francisco Bay, California—Results of measurements 1979–1980. U.S. Geological Survey Water Resources Investigations Rep. 84-4339, 1737 pp.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., and A. S. Bogdanoff, 2013: The Effect of Diurnal Sea Surface Temperature Warming on Climatological Air–Sea Fluxes. J. Climate, 26, 25462556, https://doi.org/10.1175/JCLI-D-12-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cokelet, E. D., C. Meinig, N. Lawrence-Slavas, P. J. Stabeno, C. W. Mordy, H. M. Tabisola, R. Jenkins, and J. N. Cross, 2015: The use of Saildrones to examine spring conditions in the Bering Sea. OCEANS 2015, Washington, DC, IEEE, https://doi.org/10.23919/OCEANS.2015.7404348.

    • Crossref
    • Export Citation
  • da Silva, C. E., and R. M. Castelao, 2018: Mississippi River plume variability in the Gulf of Mexico from SMAP and MODIS-Aqua observations. J. Geophys. Res. Oceans, 123, 66206638, https://doi.org/10.1029/2018JC014159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., P. J. Minnett, C. L. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and M. J. Murray, 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., and et al. , 2014: Ship-borne thermal infrared radiometer systems. Experimental Methods in the Physical Sciences, G. Zibordi, C. J. Donlon, and A. C. Parr, Eds., Optical Radiometry for Ocean Climate Measurements, Vol. 47, Academic Press, 10794042.

    • Search Google Scholar
    • Export Citation
  • Dzwonkowski, B., and X. Yan, 2005: Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data. Cont. Shelf Res., 25, 19421958, https://doi.org/10.1016/j.csr.2005.06.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., G. S. Young, E. F. Bradley, D. P. Rogers, and J. B. Edson, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilhousen, D. B., 1987: A field evaluation of NBDC moored buoy winds. J. Atmos. Oceanic Technol., 4, 94104, https://doi.org/10.1175/1520-0426(1987)004<0094:AFEONM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guymer, T. H., J. A. Businger, K. B. Katsaros, W. J. Shaw, P. K. Taylor, W. G. Large, and R. E. Payne, 1983: Transfer processes at the air-sea interface. Philos. Trans. Roy. Soc. London, 308A, 253273, https://doi.org/10.1098/RSTA.1983.0003.

    • Search Google Scholar
    • Export Citation
  • Hanafin, J. A., and P. J. Minnett, 2005: Measurements of the infrared emissivity of a wind-roughened sea surface. Appl. Opt., 44, 398411, https://doi.org/10.1364/AO.44.000398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., D. A. Jay, P. M. Orton, and E. Y. Spahn, 2009: A conceptual model of the strongly tidal Columbia River plume. J. Mar. Syst., 78, 460475, https://doi.org/10.1016/j.jmarsys.2008.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., R. D. Hetland, and D. G. MacDonald, 2015: Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech., 47, 569594, https://doi.org/10.1146/annurev-fluid-010313-141408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, Y., and A. Wada, 2007: Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721744, https://doi.org/10.1007/s10872-007-0063-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. C. Beardsley, R. Limeburner, K. H. Brink, J. D. Paduan, and T. K. Chereskin, 1998: Variability of the near-surface eddy kinetic energy in the California Current based on altimetric, drifter, and moored current data. J. Geophys. Res., 103, 13 06713 083, https://doi.org/10.1029/97JC03760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilcher, L. F., and J. D. Nash, 2010: Structure and dynamics of the Columbia River tidal plume front. J. Geophys. Res., 115, C05S90, https://doi.org/10.1029/2009JC006066.

    • Search Google Scholar
    • Export Citation
  • Meinig, C., and et al. , 2019: Public–private partnerships to advance regional ocean-observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci., 6, 448, https://doi.org/10.3389/fmars.2019.00448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meissner, T., F. Wentz, A. Manaster, and R. Lindsley, 2019: NASA/RSS SMAP salinity: Version 4.0 validated release. Remote Sensing Systems Tech. Rep. 082219, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., M. Smith, and B. Ward, 2011: Measurements of the oceanic thermal skin effect. Deep-Sea Res. II, 58, 861868, https://doi.org/10.1016/j.dsr2.2010.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., and et al. , 2019: Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nezlin, N. P., P. M. DiGiacomo, E. D. Stein, and D. Ackerman, 2005: Stormwater runoff plumes observed by SeaWiFS radiometer in the Southern California Bight. Remote Sens. Environ., 98, 494510, https://doi.org/10.1016/j.rse.2005.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., J. C. McWilliams, and J. Gula, 2018: Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Sci. Rep., 8, 13388, https://doi.org/10.1038/s41598-018-31602-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesler, C., and et al. , 2017: Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods, 15, 572585, https://doi.org/10.1002/lom3.10185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saildrone, 2018: Saildrone Baja field campaign surface and ADCP measurements, version 1.0. PO.DAAC, accessed 2 January 2019, http://doi.org/10.5067/SDRON-SURF0.

    • Crossref
    • Export Citation
  • Scott, J., S. Crooke, I. Cetinic, C. E. Del Castillo, and C. Gentemann, 2020: Correcting non-photochemical quenching of Saildrone chlorophyll-a fluorescence for evaluation of satellite ocean color retrievals. Opt. Express, 28, 42744285, https://doi.org/10.1364/OE.382029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seegers, B. N., R. P. Stumpf, B. A. Schaeffer, K. A. Loftin, and P. J. Werdell, 2018: Performance metrics for the assessment of satellite data products: An ocean color case study. Opt. Express, 26, 74047422, https://doi.org/10.1364/OE.26.007404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, M., and et al. , 2019: The variability of winds and fluxes observed near submesoscale fronts. J. Geophys. Res. Oceans, 124, 77567780, https://doi.org/10.1029/2019JC015236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219237, https://doi.org/10.1007/s10546-006-9127-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and et al. , 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 2006: The Near-Surface Layer of the Ocean: Structure, Dynamics and Applications. Springer, 574 pp.

  • Strub, P. T., and C. James, 1995: The large-scale summer circulation of the California Current. Geophys. Res. Lett., 22, 207210, https://doi.org/10.1029/94GL03011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res. Oceans, 121, 35973624, https://doi.org/10.1002/2015JC011563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., and R. A. Weatherbee, 2006: Satellite-measured temporal variability of the Columbia River plume. Remote Sens. Environ., 100, 167178, https://doi.org/10.1016/j.rse.2005.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vazquez-Cuervo, J. S., J. Gomez-Valdes, M. Bouali, L. E. Miranda, T. Van der Stocken, W. Tang, and C. Gentemann, 2019: Using Saildrones to validate satellite-derived sea surface salinity and sea surface temperature along the California/Baja coast. Remote Sens ., 11, 1964, https://doi.org/10.3390/rs11171964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and S. P. Anderson, 1996: Surface meteorology and air–sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean–Atmosphere Response Experiment. J. Climate, 9, 19591990, https://doi.org/10.1175/1520-0442(1996)009<1959:SMAASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and R. S. Arthur, 2018: Response of the atmospheric boundary layer to sub-mesoscale sea surface temperature fronts. Geophys. Res. Lett., 45, 13 50513 512, https://doi.org/10.1029/2018GL081034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, X., N. Briggs, E. Boss, and H. Claustre, 2018: Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. Opt. Express, 26, 24734, https://doi.org/10.1364/OE.26.024734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2019: Global air–sea fluxes of heat, fresh water, and momentum: Energy budget closure and unanswered questions. Annu. Rev. Mar. Sci., 11, 227248, https://doi.org/10.1146/annurev-marine-010816-060704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., and et al. , 2019: Comparing air-sea flux measurements from a new unmanned surface vehicle and proven platforms during the SPURS-2 field campaign. Oceanography, 32 (2), 122133, https://doi.org/10.5670/OCEANOG.2019.220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Hu, and M. X. He, 2009: Scattering by pure seawater: Effect of salinity. Opt. Express, 17, 56985710, https://doi.org/10.1364/OE.17.005698.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 442 442 82
PDF Downloads 399 399 79

Saildrone: Adaptively Sampling the Marine Environment

View More View Less
  • 1 Farallon Institute, Petaluma, California, and Earth and Space Research, Seattle, Washington
  • | 2 Science Applications International Corporation, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 3 Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia
  • | 4 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 5 University of Miami, Miami, Florida
  • | 6 University of Rhode Island, Kingston, Rhode Island
  • | 7 Brown University, Providence, Rhode Island
  • | 8 University Space Research Associates, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 10 Ensenada Center for Scientific Research and Higher Education, Ensenada, Mexico
  • | 11 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 12 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 13 Saildrone Inc., Alameda, California
© Get Permissions
Restricted access

Abstract

From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: C. L. Gentemann, cgentemann@faralloninstitute.org

Abstract

From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: C. L. Gentemann, cgentemann@faralloninstitute.org
Save