• Aon, 2019: Weather, climate & catastrophe insight: 2018 annual report. Aon plc, 86 pp., http://thoughtleadership.aonbenfield.com/Documents/20190122-ab-if-annual-weather-climate-report-2018.pdf.

  • Barbero, R., J. T. Abatzoglou, C. A. Kolden, K. C. Hegewisch, N. K. Larkin, and H. Podschwit, 2015: Multi-scalar influence of weather and climate on very large-fires in the eastern United States. Int. J. Climatol ., 35, 21802186, https://doi.org/10.1002/joc.4090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic Hurricanes. Science, 327, 454458, https://doi.org/10.1126/science.1180568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561, https://doi.org/10.1111/j.1600-0870.2007.00251.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, and D. Wroe, 2019: Hurricane Lane (EP142018), 15-28 August 2018. NHC Tropical Cyclone Rep., 28 pp., www.nhc.noaa.gov/data/tcr/EP142018_Lane.pdf.

  • Beverly, J., and M. Wotton, 2007: Modelling the probability of sustained flaming: Predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. Int. J. Wildland Fire, 16, 161, https://doi.org/10.1071/WF06072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brolley, J., J. O’Brien, J. Schoof, and D. Zierden, 2007: Experimental drought threat forecast for Florida. Agric. For. Meteor., 145, 8496, https://doi.org/10.1016/j.agrformet.2007.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. H., D. Josephson, J. Elbert, and W. Friday, 1993: Hurricane Iniki, September 6-13, 1992. National Disaster Survey Rep., NOAA, 111 pp., www.weather.gov/media/publications/assessments/iniki1.pdf.

    • Search Google Scholar
    • Export Citation
  • Burnett, J., 2018: Damage to county infrastructure caused by Lane totals about $20M. Hawaii Tribune-Herald, 14 September, www.hawaiitribune-herald.com/2018/09/14/hawaii-news/damage-to-county-infrastructure-caused-by-lane-totals-about-20m/.

  • Businger, S., M. P. Nogelmeier, P. W. U. Chinn, and T. Schroeder, 2018: Hurricane with a history: Hawaiian newspapers illuminate an 1871 storm. Bull. Amer. Meteor. Soc., 99, 137147, https://doi.org/10.1175/BAMS-D-16-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, J., 2019: A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev., 8, 103107, https://doi.org/10.1016/j.tcrr.2019.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheney, P., and A. Sullivan, 2008: Grassfires: Fuel, Weather and Fire Behaviour .2nd ed. CSIRO Publishing, 160 pp.

  • Christopher, S. A., P. Gupta, U. Nair, T. A. Jones, S. Kondragunta, Y. Wu, J. Hand, and X. Zhang, 2009: Satellite remote sensing and mesoscale modeling of the 2007 Georgia/Florida fires. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2, 163175, https://doi.org/10.1109/JSTARS.2009.2026626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coral Reef Watch, 2019: NOAA Coral Reef Watch Version 3.0 Daily Global 5-km Satellite Virtual Station Time Series Data for the Hawaiian Islands, Aug. 1, 2018 - Aug. 31, 2018. National Ocean and Atmospheric Administration, accessed 7 March 2019, https://coralreefwatch.noaa.gov/vs/data.php.

  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., and R. A. Houze, 2017: Orographic modification of precipitation processes in Hurricane Karl (2010). Mon. Wea. Rev., 145, 41714186, https://doi.org/10.1175/MWR-D-17-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dolling, K., P.-S. Chu, and F. Fujioka, 2005: A climatological study of the Keetch/Byram drought index and fire activity in the Hawaiian Islands. Agric. For. Meteor., 133, 1727, https://doi.org/10.1016/j.agrformet.2005.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drusch, M., and et al. , 2012: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ., 120, 2536, https://doi.org/10.1016/j.rse.2011.11.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., and I. A. Renfrew, 2016: The causes of foehn warming in the lee of mountains. Bull. Amer. Meteor. Soc., 97, 455466, https://doi.org/10.1175/BAMS-D-14-00194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FDEM, 2011: Appendix G: State of Florida wildfire hazard mitigation plan annex. Tech. rep., Florida Division of Emergency Management, 219 pp., www.floridadisaster.org/contentassets/c6a7ead876b1439caad3b38f7122d334/appendix-g_wildfire-hazard-mitigation-plan-annex.pdf.

    • Search Google Scholar
    • Export Citation
  • FEMA, 2018: President Donald J. Trump approves major disaster declaration for Hawaii. U.S. Department of Homeland Security, Federal Emergency Management Agency, www.fema.gov/news-release/2018/09/28/president-donald-j-trump-approves-major-disaster-declaration-hawaii.

  • Fernandes, P., 2018: Avoiding disastrous wildfires in Europe. Science eLetters, https://science.sciencemag.org/content/359/6379/1001.2/tab-e-letters.

    • Search Google Scholar
    • Export Citation
  • Fett, R. W., 1964: Aspects of hurricane structure: New model considerations suggested by TIROS and Project Mercury observations. Mon. Wea. Rev., 92, 4360, https://doi.org/10.1175/1520-0493(1964)092<0043:AOHSNM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frazier, A. G., and T. W. Giambelluca, 2017: Spatial trend analysis of Hawaiian rainfall from 1920 to 2012. Int. J. Climatol., 37, 25222531, https://doi.org/10.1002/joc.4862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giambelluca, T. W., Q. Chen, A. G. Frazier, J. P. Price, Y.-L. Chen, P.-S. Chu, J. K. Eischeid, and D. M. Delparte, 2013: Online rainfall atlas of Hawai’i. Bull. Amer. Meteor. Soc., 94, 313316, https://doi.org/10.1175/BAMS-D-11-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, K. S., 2018: All-hazards preparedness improvement action plan and report. State of Hawai’i, Department of Defense, 36 pp., https://dod.hawaii.gov/hiema/files/2018/02/Preparedness-Report-18FEB2018.pdf.

  • Kim, Y.-S., J. Bai, and E. Tian, 2018: Population and economic projections for the state of Hawaii to 2045. Research and Economic Analysis Division Department of Business, Economic Development and Tourism, State of Hawaii, 34 pp., http://files.hawaii.gov/dbedt/economic/data_reports/2045-long-range-forecast/2045-long-range-forecast.pdf.

  • Klemas, V., J. Dobson, R. L. Ferguson, and K. D. Haddad, 1993: A coastal land cover classification system for the NOAA coastwatch change analysis project. J. Coastal Res., 9, 862872.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P., and M. Bell, 2018: Northeast Pacific Ocean historical tropical cyclone statistics. Colorado State University, http://tropical.atmos.colostate.edu/Realtime/index.php?arch&loc=global.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and et al. , 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349352, https://doi.org/10.1038/nature13278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Huang, and J. Zhao, 2007: Roles of mesoscale terrain and latent heat release in typhoon precipitation: A numerical case study. Adv. Atmos. Sci., 24, 3543, https://doi.org/10.1007/s00376-007-0035-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633660, https://doi.org/10.1175/1520-0434(2001)016<0633:SCIFHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K., H. Lu, and C. Shen, 2008: A 1200-year proxy record of hurricanes and fires from the Gulf of Mexico coast: Testing the hypothesis of hurricane-fire interactions. Quat. Res., 69, 2941, https://doi.org/10.1016/j.yqres.2007.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., and et al. , 2018: Compilation of climate data from heterogeneous networks across the Hawaiian Islands. Sci. Data, 5, 180012 https://doi.org/10.1038/sdata.2018.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longman, R. J., and et al. , 2019: High-resolution gridded daily rainfall and temperature for the Hawaiian islands (1990–2014). J. Hydrometeor., 20, 489508, https://doi.org/10.1175/JHM-D-18-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mora, C., and et al. , 2018: Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Climate Change, 8, 10621071, https://doi.org/10.1038/s41558-018-0315-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., R. Mizuta, and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn ., 39, 25692584, https://doi.org/10.1007/s00382-011-1223-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, R. K., and D. H. van Lear, 1998: Hurricane-fire interactions in coastal forests of the south: A review and hypothesis. For. Ecol. Manage., 103, 265276, https://doi.org/10.1016/S0378-1127(97)00223-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/CPHC, 2018: Hurricane Walaka Intermediate Advisory Number 18a. NOAA/Pacific Regional Headquarters Central Pacific Hurricane Center, www.nhc.noaa.gov/archive/2018/cp01/cp012018.public_a.018.shtml?.

  • NOAA/CPHC, 2019: CPHC Tropical Cyclone Product Archives. NOAA/Central Pacific Hurricane Center, www.nhc.noaa.gov/data/.

  • NOAA/NCEI, 2018: State of the Climate: Global Climate Report for September 2018. NOAA/National Centers for Environmental Information, www.ncdc.noaa.gov/sotc/global/201809.

  • NOAA/NCEI, 2019: State of the Climate: Global Climate Report for Annual 2018. NOAA/National Centers for Environmental Information, www.ncdc.noaa.gov/sotc/global/201813.

  • NOAA/NHC, 2019: 2018 Tropical Cyclone Advisory Archive. National Hurricane Center, www.nhc.noaa.gov/archive/2018/.

  • NWS, 2018: Public information statement, 459 AM HST Sun Aug 26 2018. National Weather Service Public Weather Statement, http://mesonet.agron.iastate.edu/wx/afos/p.php?pil=PNSHFO&e=201808261459.

  • NWS/HADS, 2018: Hydrometeorological Automated Data System. NOAA/National Weather Service, https://hads.ncep.noaa.gov/.

  • NWS/HFO, 2018a: Fire Weather Operations Plan. NOAA/National Weather Service, Honolulu Forecast Office, www.prh.noaa.gov/hnl/pages/Firewxops.doc.

  • NWS/HFO, 2018b: Monthly precipitation summary for the state of Hawaii. NOAA/NWS, www.weather.gov/hfo/hydro_summary.

  • O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA, 106, 14 77314 777, https://doi.org/10.1073/pnas.0907610106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osher, W., 2018: Conditions “unprecedented” in battling west Maui fires during hurricane warning. Maui Now, 27 August, https://mauinow.com/2018/08/27/conditions-unprecedented-in-battling-west-maui-fires-during-hurricane-warning/.

    • Search Google Scholar
    • Export Citation
  • Perroy, R. L., J. Melrose, and S. Cares, 2016: The evolving agricultural landscape of post-plantation Hawai’i. Appl. Geogr., 76, 154162, https://doi.org/10.1016/j.apgeog.2016.09.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterkin, O., 2018: Heavy rains, flooding brought by Lane deals serious damage to Maui roads. Hawaii News Now, 26 August, www.hawaiinewsnow.com/story/38962760/heavy-rains-flooding-brought-by-lane-deals-serious-damage-to-maui-roads/.

  • Platt, W. J., B. Beckage, R. F. Doren, and H. H. Slater, 2002: Interactions of large-scale disturbances: Prior fire regimes and hurricane mortality of savanna pines. Ecology, 83, 15661572, https://doi.org/10.1890/0012-9658(2002)083[1566:IOLSDP]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. M., A. B. Kennedy, J. J. Westerink, A. A. Taflanidis, and K. F. Cheung, 2012: Hawaii hurricane wave and surge modeling and fast forecasting. Coastal Eng. Proc., 1, 8, https://doi.org/10.9753/icce.v33.management.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., P. Schafer, D. Kirshbaum, and E. Regina, 2009: Orographic enhancement of precipitation inside Hurricane Dean. J. Hydrometeor., 10, 820831, https://doi.org/10.1175/2008JHM1057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • State of Hawaii Office of Planning, 2019: Hawaii Statewide GIS Program. State of Hawaii, http://planning.hawaii.gov/gis/.

  • Suryanata, K., 2002: Diversified agriculture, land use, and agrofood networks in Hawaii. Econ. Geogr., 78, 71, https://doi.org/10.2307/4140824.

  • Svoboda, M., and et al. , 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trauernicht, C., 2019: Vegetation-rainfall interactions reveal how climate variability and climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii. Sci. Total Environ., 650, 459469, https://doi.org/10.1016/j.scitotenv.2018.08.347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trauernicht, C., and M. P. Lucas, 2016: Wildfire ignition density maps for Hawaii. Forest and Natural Resource Management Series RM-21, University of Hawaiʻi Cooperative Extension Service, www.ctahr.hawaii.edu/oc/freepubs/pdf/RM-21.pdf.

  • Trauernicht, C., E. Pickett, C. P. Giardina, C. M. Litton, S. Cordell, and A. Beavers, 2015: The contemporary scale and context of wildfire in Hawaiʻi. Pac. Sci., 69, 427444, https://doi.org/10.2984/69.4.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, R. K., S. Subak, and W. N. Adger, 1996: Pressures, trends, and impacts in coastal zones: Interactions between socioeconomic and natural systems. Environ. Manage., 20, 159173, https://doi.org/10.1007/BF01204001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viney, N., 1991: A review of fine fuel moisture modelling. Int. J. Wildland Fire, 1, 215, https://doi.org/10.1071/WF9910215.

  • Willmott, C. J., and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, https://doi.org/10.1002/joc.3370150207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, C., 2018: Wind-whipped fire ravages Lahaina hillsides, destroys 21 structures. Honolulu Star Advertiser, 26 August, www.staradvertiser.com/2018/08/26/hawaii-news/wind-whipped-fire-ravages-lahaina-hillsides-destroys-21-structures/.

  • Wolshon, B., E. Urbina Hamilton, M. Levitan, and C. Wilmot, 2005: Review of policies and practices for hurricane evacuation. II: Traffic operations, management, and control. Nat. Hazards Rev., 6, 143161, https://doi.org/10.1061/(ASCE)1527-6988(2005)6:3(143).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 10011015, https://doi.org/10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 973 973 111
PDF Downloads 224 224 52

Fire and Rain: The Legacy of Hurricane Lane in Hawaiʻi

View More View Less
  • 1 Department of Atmospheric Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi
  • | 2 East West Center, Honolulu, Hawaiʻi
  • | 3 Department of Natural Resources and Environmental Management, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi
  • | 4 Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi
  • | 5 Water Resources Research Center and Department of Geography and Environment, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi
© Get Permissions
Restricted access

Abstract

Hurricane Lane (2018) was an impactful event for the Hawaiian Islands and provided a textbook example of the compounding hazards that can be produced from a single storm. Over a 4-day period, the island of Hawaiʻi received an island-wide average of 424 mm (17 in.) of rainfall, with a 4-day single-station maximum of 1,444 mm (57 in.), making Hurricane Lane the wettest tropical cyclone ever recorded in Hawaiʻi (based on all available quantitative records). Simultaneously, fires on the islands of nearby Maui and Oʻahu burned 1,043 ha (2,577 ac) and 162 ha (400 ac), respectively. Land-use characteristics and antecedent moisture conditions exacerbated fire hazard, and both fire and rain severity were influenced by the storm environment and local topographical features. Broadscale subsidence around the storm periphery and downslope winds resulted in dry and windy conditions conducive to fire, while in a different region of the same storm, preexisting convection, incredibly moist atmospheric conditions, and upslope flow brought intense, long-duration rainfall. The simultaneous occurrence of rain-driven flooding and landslides, high-intensity winds, and multiple fires complicated emergency response. The compounding nature of the hazards produced during the Hurricane Lane event highlights the need to improve anticipation of complex feedback mechanisms among climate- and weather-related phenomena.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Alison D. Nugent, anugent@hawaii.edu

Abstract

Hurricane Lane (2018) was an impactful event for the Hawaiian Islands and provided a textbook example of the compounding hazards that can be produced from a single storm. Over a 4-day period, the island of Hawaiʻi received an island-wide average of 424 mm (17 in.) of rainfall, with a 4-day single-station maximum of 1,444 mm (57 in.), making Hurricane Lane the wettest tropical cyclone ever recorded in Hawaiʻi (based on all available quantitative records). Simultaneously, fires on the islands of nearby Maui and Oʻahu burned 1,043 ha (2,577 ac) and 162 ha (400 ac), respectively. Land-use characteristics and antecedent moisture conditions exacerbated fire hazard, and both fire and rain severity were influenced by the storm environment and local topographical features. Broadscale subsidence around the storm periphery and downslope winds resulted in dry and windy conditions conducive to fire, while in a different region of the same storm, preexisting convection, incredibly moist atmospheric conditions, and upslope flow brought intense, long-duration rainfall. The simultaneous occurrence of rain-driven flooding and landslides, high-intensity winds, and multiple fires complicated emergency response. The compounding nature of the hazards produced during the Hurricane Lane event highlights the need to improve anticipation of complex feedback mechanisms among climate- and weather-related phenomena.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Alison D. Nugent, anugent@hawaii.edu
Save