• Aon, 2019: Weather, climate and catastrophe insight: 2018 annual report. Aon Rep., 86 pp., http://thoughtleadership.aonbenfield.com/Documents/20190122-ab-if-annual-weather-climate-report-2018.pdf.

    • Search Google Scholar
    • Export Citation
  • Atkinson, G. D., and C. R. Holliday, 1977: Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Wea. Rev., 105, 421427, https://doi.org/10.1175/1520-0493(1977)105<0421:TCMSLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakkensen, L. A., and R. O. Mendelsohn, 2016: Risk and adaptation: Evidence from global hurricane damages and fatalities. J. Assoc. Environ. Resour. Econ., 3, 555587, https://doi.org/10.1086/685908.

    • Search Google Scholar
    • Export Citation
  • Berg, R., 2009: National Hurricane Center tropical cyclone report: Hurricane Ike (AL092008). NHC Tech. Rep., 55 pp., www.nhc.noaa.gov/data/tcr/AL092008_Ike.pdf.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, R. Berg, and A. Hagen, 2019: National Hurricane Center tropical cyclone report: Hurricane Michael (AL142018). NHC Tech. Rep., 86 pp., www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, 2013: National Hurricane Center tropical cyclone report: Hurricane Sandy (AL182012). NHC Tech. Rep., 157 pp., www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., and L. E. Newman, 2000: Climatological relationships between tropical cyclones and rainfall. Mon. Wea. Rev., 128, 33293336, https://doi.org/10.1175/1520-0493(2000)128<3329:CRBTCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., E. Yonekura, C. Karamperidou, N. Cavanaugh, and K. Serafin, 2013: U.S. hurricanes and economic damage: Extreme value perspective. Nat. Hazards Rev., 14, 237246, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, W. Dong, and Y. Lin, 2016: Observed tropical cyclone size revisited. J. Climate, 29, 29232939, https://doi.org/10.1175/JCLI-D-15-0731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., K. A. Reed, and J. A. Knaff, 2017: Physical understanding of the tropical cyclone wind-pressure relationship. Nat. Commun., 8, 1360, https://doi.org/10.1038/s41467-017-01546-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, https://doi.org/10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. R., and K. Hereid, 2015: The frequency and duration of US hurricane droughts. Geophys. Res. Lett., 42, 34823485, https://doi.org/10.1002/2015GL063652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., D. R. Chavas, and M. P. Guishard, 2016: The arbitrary definition of the current Atlantic major hurricane landfall drought. Bull. Amer. Meteor. Soc., 97, 713722, https://doi.org/10.1175/BAMS-D-15-00185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, C. G., R. A. Weinzapfel, and M. A. Chambers, 2008: The hurricane severity index—A new way of estimating a tropical cyclone’s destructive potential. Tropical Meteorology Special Symp./19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., JP1.4, https://ams.confex.com/ams/88Annual/techprogram/paper_135054.htm.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, Y. Chen, H. Kuo, and M. S. Peng, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 16231643, https://doi.org/10.1175/JAS-D-13-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 2008: A revised hurricane pressure–wind model. Mon. Wea. Rev., 136, 34323445, https://doi.org/10.1175/2008MWR2395.1.

  • Houston, S. H., W. A. Shaffer, M. D. Powell, and J. Chen, 1999: Comparisons of HRD and SLOSH surface wind fields in hurricanes: Implications for storm surge modeling. Wea. Forecasting, 14, 671686, https://doi.org/10.1175/1520-0434(1999)014<0671:COHASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howden, S., D. Gilhousen, N. Guinasso, J. Walpert, M. Sturgeon, and L. Bender, 2008: Hurricane Katrina winds measured by a buoy-mounted sonic anemometer. J. Atmos. Oceanic Technol., 25, 607616, https://doi.org/10.1175/2007JTECHO518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 2003–2013, https://doi.org/10.1175/2008JPO3727.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L., 2006: Time to replace the Saffir–Simpson hurricane scale? Eos, Trans. Amer. Geophys. Union, 87, 36, https://doi.org/10.1029/2006EO010003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and C. W. Landsea, 2015: Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. J. Climate, 28, 76217629, https://doi.org/10.1175/JCLI-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., S. G. Bowen, R. Pielke Jr., and M. M. Bell, 2018: Continental United States landfall frequency and associated damage: Observations and future risks. Bull. Amer. Meteor. Soc., 99, 13591376, https://doi.org/10.1175/BAMS-D-17-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188, https://doi.org/10.1175/WAF965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., J. A. Knaff, C. R. Sampson, G. M. Riggio, and A. D. Schnapp, 2013: A pressure-based analysis of the historical western North Pacific tropical cyclone intensity record. Mon. Wea. Rev., 141, 26112631, https://doi.org/10.1175/MWR-D-12-00323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koba, H., T. Hagiwara, S. Osano, and S. Akashi, 1990: Relationship between the CI-number and central pressure and maximum wind speed in typhoons (in Japanese). J. Meteor. Res. Japan, 42, 5967.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: A reanalysis of Hurricane Andrew’s intensity. Bull. Amer. Meteor. Soc., 85, 16991712, https://doi.org/10.1175/BAMS-85-11-1699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., R. Rogers, T. Marchok, and F. D. Marks, 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 30863097, https://doi.org/10.1175/MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 1984: Hurricane Alicia, Galveston and Houston, Texas: August 17–18, 1983. National Academies Press, 171 pp.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and E. Uhlhorn, 2014: On the limits of estimating the maximum wind speeds in hurricanes. Mon. Wea. Rev., 142, 28142837, https://doi.org/10.1175/MWR-D-13-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damages in the United States. Nat. Hazards Rev., 9, 2942, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pike, J. M., and D. W. Bargen, 1976: The NCAR digital barometer. Bull. Amer. Meteor. Soc., 57, 11061111, https://doi.org/10.1175/1520-0477(1976)057<1106:TNDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilkington, S., and H. Mahmoud, 2016: Using artificial neural networks to forecast economic impact of multi-hazard hurricane-based events. Sustainable Resilient Infrastruct ., 1, 6383, https://doi.org/10.1080/23789689.2016.1179529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, https://doi.org/10.1175/BAMS-88-4-513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 1993: Preliminary report: Hurricane Andrew. NHC Rep., 38 pp., www.nhc.noaa.gov/archive/storm_wallets/atlantic/atl1992/andrew/prenhc/.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, https://doi.org/10.1175/2008WAF2222128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffir, H. S., 1973: Hurricane wind and storm surge. Mil. Eng., 423, 45.

  • Schott, T., and Coauthors, 2012: The Saffir–Simpson hurricane wind scale. NHC Rep., 4 pp., www.nhc.noaa.gov/pdf/sshws.pdf.

  • Simpson, R. H., 1974: The hurricane disaster—Potential scale. Weatherwise, 27, 169186, https://doi.org/10.1080/00431672.1974.9931702.

  • Smith, A. B., and R. W. Katz, 2013: US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards, 67, 387410, https://doi.org/10.1007/s11069-013-0566-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., and R. Berg, 2019: National Hurricane Center tropical cyclone report: Hurricane Florence (AL062018). NHC Tech. Rep., 98 pp., www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf.

    • Search Google Scholar
    • Export Citation
  • Takagi, H., and W. Wu, 2016: Maximum wind radius estimated by the 50 kt wind radius: Improvement of storm surge forecasting over the western North Pacific. Nat. Hazards Earth Syst. Sci., 16, 705717, https://doi.org/10.5194/nhess-16-705-2016.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, A. M., D. W. Titley, M. E. Mann, R. G. Najjar, and S. K. Miller, 2018: A fiscally based scale for tropical cyclone storm surge. Wea. Forecasting, 33, 17091723, https://doi.org/10.1175/WAF-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinkle, J., C. W. Landsea, D. Collins, R. Masulin, R. P. Crompton, P. J. Klotzbach, and R. Pielke Jr., 2018: Normalized hurricane damage in the continental United States 1900–2017. Nat. Sustainability, 1, 808813, https://doi.org/10.1038/s41893-018-0165-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, A. R., and J. H. Jiang, 2014: Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ. Res. Lett., 9, 064019, https://doi.org/10.1088/1748-9326/9/6/064019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 709 709 157
PDF Downloads 528 528 110

Surface Pressure a More Skillful Predictor of Normalized Hurricane Damage than Maximum Sustained Wind

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Aon, Chicago, Illinois
  • | 3 Cooperative Programs for the Advancement of Earth System Science, UCAR, San Diego, California
  • | 4 NOAA/National Centers for Environmental Information, Asheville, North Carolina
  • | 5 Cooperative Institute for Climate and Satellites–North Carolina, North Carolina State University, Asheville, North Carolina
© Get Permissions
Restricted access

Abstract

Atlantic hurricane seasons have a long history of causing significant financial impacts, with Harvey, Irma, Maria, Florence, and Michael combining to incur more than 345 billion USD in direct economic damage during 2017–2018. While Michael’s damage was primarily wind and storm surge-driven, Florence’s and Harvey’s damage was predominantly rainfall and inland flood-driven. Several revised scales have been proposed to replace the Saffir–Simpson Hurricane Wind Scale (SSHWS), which currently only categorizes the hurricane wind threat, while not explicitly handling the totality of storm impacts including storm surge and rainfall. However, most of these newly-proposed scales are not easily calculated in real-time, nor can they be reliably calculated historically. In particular, they depend on storm wind radii, which remain very uncertain. Herein, we analyze the relationship between normalized historical damage caused by continental United States (CONUS) landfalling hurricanes from 1900–2018 with both maximum sustained wind speed (Vmax) and minimum sea level pressure (MSLP). We show that MSLP is a more skillful predictor of normalized damage than Vmax, with a significantly higher rank correlation between normalized damage and MSLP (rrank = 0.77) than between normalized damage and Vmax (rrank = 0.66) for all CONUS landfalling hurricanes. MSLP has served as a much better predictor of hurricane damage in recent years than Vmax, with large hurricanes such as Ike (2008) and Sandy (2012) causing much more damage than anticipated from their SSHWS ranking. MSLP is also a more accurately-measured quantity than is Vmax, making it an ideal quantity for evaluating a hurricane’s potential damage.

Corresponding author: Philip J. Klotzbach, philk@atmos.colostate.edu

Abstract

Atlantic hurricane seasons have a long history of causing significant financial impacts, with Harvey, Irma, Maria, Florence, and Michael combining to incur more than 345 billion USD in direct economic damage during 2017–2018. While Michael’s damage was primarily wind and storm surge-driven, Florence’s and Harvey’s damage was predominantly rainfall and inland flood-driven. Several revised scales have been proposed to replace the Saffir–Simpson Hurricane Wind Scale (SSHWS), which currently only categorizes the hurricane wind threat, while not explicitly handling the totality of storm impacts including storm surge and rainfall. However, most of these newly-proposed scales are not easily calculated in real-time, nor can they be reliably calculated historically. In particular, they depend on storm wind radii, which remain very uncertain. Herein, we analyze the relationship between normalized historical damage caused by continental United States (CONUS) landfalling hurricanes from 1900–2018 with both maximum sustained wind speed (Vmax) and minimum sea level pressure (MSLP). We show that MSLP is a more skillful predictor of normalized damage than Vmax, with a significantly higher rank correlation between normalized damage and MSLP (rrank = 0.77) than between normalized damage and Vmax (rrank = 0.66) for all CONUS landfalling hurricanes. MSLP has served as a much better predictor of hurricane damage in recent years than Vmax, with large hurricanes such as Ike (2008) and Sandy (2012) causing much more damage than anticipated from their SSHWS ranking. MSLP is also a more accurately-measured quantity than is Vmax, making it an ideal quantity for evaluating a hurricane’s potential damage.

Corresponding author: Philip J. Klotzbach, philk@atmos.colostate.edu
Save