• Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., K. J. Claffy, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor ., 97, 459486, https://doi.org/10.1023/A:1002793831076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bannehr, L., and R. Schwiesow, 1993: A technique to account for the misalignment of pyranometers installed on aircraft. J. Atmos. Oceanic Technol., 10, 774777, https://doi.org/10.1175/1520-0426(1993)010<0774:ATTAFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., E. Luke, and P. Kollias, 2016: On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars. J. Geophys. Res. Atmos., 121, 59725989, https://doi.org/10.1002/2015JD024543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., B. A. Crease, and W. T. Roach, 1982: A field study of nocturnal stratocumulus. II: Turbulence structure and entrainment. Quart. J. Roy. Meteor. Soc., 108, 125144, https://doi.org/10.1002/qj.49710845508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • China, S., and Coauthors, 2015: Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties. Geophys. Res. Lett., 42, 12431250, https://doi.org/10.1002/2014GL062404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • China, S., and Coauthors, 2017: Ice cloud formation potential by free tropospheric particles from long-range transport over the northern Atlantic Ocean. J. Geophys. Res. Atmos., 122, 30653079, https://doi.org/10.1002/2016JD025817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collaud Coen, M., and Coauthors, 2018: Identification of topographic features influencing aerosol observations at high altitude stations. Atmos. Chem. Phys., 18, 12 28912 313, https://doi.org/10.5194/acp-18-12289-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, D. R., and Coauthors, 2000: In situ aerosol-size distributions and clear-column radiative closure during ACE-2. Tellus, 52, 498525, https://doi.org/10.3402/TELLUSB.V52i2.16175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and Q. Wang, 2007: Do stratocumulus clouds detrain? FIRE I data revisited. Bound.-Layer Meteor., 122, 479491, https://doi.org/10.1007/s10546-006-9113-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, N., S. Glienke, J. Fugal, and R. A. Shaw, 2019: Search for microphysical signatures of stochastic condensation in marine boundary layer clouds using airborne digital holography. J. Geophys. Res. Atmos., 124, 27392752, https://doi.org/10.1029/2018JD029033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, A. Kennedy, P. Minnis, and R. Wood, 2014: A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM Mobile Facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 36653682, https://doi.org/10.1175/JCLI-D-13-00553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dzepina, K., and Coauthors, 2015: Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: A case study with a long-range transported biomass burning plume. Atmos. Chem. Phys., 15, 50475068, https://doi.org/10.5194/acp-15-5047-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egerer, U., M. Gottschalk, H. Siebert, A. Ehrlich, and M. Wendisch, 2019: The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: First applications in the cloudy Arctic boundary layer. Atmos. Meas. Tech., 12, 40194038, https://doi.org/10.5194/amt-12-4019-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., and M. Wendisch, 2015: Reconstruction of high-resolution time series from slow-response broadband terrestrial irradiance measurements by deconvolution. Atmos. Meas. Tech., 8, 36713684, https://doi.org/10.5194/amt-8-3671-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., B. G. Arends, and A. S. Ackerman, 1994: New microphysics sensor for aircraft use. Atmos. Res., 31, 235252, https://doi.org/10.1016/0169-8095(94)90001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowski, J.-L. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459, https://doi.org/10.1175/JAS-3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., G. Frick, S. P. Malinowski, H. Jonsson, D. Khelif, and S. Krueger, 2013: Entrainment rates and microphysics in post stratocumulus. J. Geophys. Res. Atmos., 118, 12 09412 109, https://doi.org/10.1002/jgrd.50878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H., S. P. Malinowski, and H. Jonsson, 2016: Evaporative and radiative cooling in POST stratocumulus. J. Atmos. Sci., 73, 38773884, https://doi.org/10.1175/JAS-D-16-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghate, V., B. Albrecht, M. Miller, A. Brewer, and C. Fairall, 2014: Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx. J. Appl. Meteor. Climatol., 53, 117135, https://doi.org/10.1175/JAMC-D-12-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haman, K. E., A. Makulski, S. P. Malinowski, and R. Busen, 1997: A new ultrafast thermometer for airborne measurements in clouds. J. Atmos. Oceanic Technol., 14, 217227, https://doi.org/10.1175/1520-0426(1997)014<0217:ANUTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haman, K. E., S. P. Malinowski, M. J. Kurowski, H. Gerber, and J.-L. Brenguier, 2007: Small-scale mixing processes at the top of a marine stratocumulus—A case-study. Quart. J. Roy. Meteor. Soc., 133, 213226, https://doi.org/10.1002/qj.5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018a: ERA5 hourly data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 14 May 2020, https://doi.org/10.24381/cds.bd0915c6.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018b: ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed 11 May 2020, https://doi.org/10.24381/cds.adbb2d47.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, 2009: Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar. Quart. J. Roy. Meteor. Soc., 135, 635643, https://doi.org/10.1002/qj.413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Honrath, R. E., and Coauthors, 2004: Regional and hemispheric impacts of anthropogenic and biomass burning emissions on summertime CO and O3 in the North Atlantic lower free troposphere. J. Geophys. Res., 109, D24310, https://doi.org/10.1029/2004JD005147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakub, F., and B. Mayer, 2017: The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets. Atmos. Chem. Phys., 17, 13 31713 327, https://doi.org/10.5194/acp-17-13317-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jen-La Plante, I., and Coauthors, 2016: Physics of Stratocumulus Top (POST): Turbulence characteristics. Atmos. Chem. Phys., 16, 97119725, https://doi.org/10.5194/acp-16-9711-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol., 10, 537548, https://doi.org/10.1002/joc.3370100509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanitz, T., A. Ansmann, R. Engelmann, and D. Althausen, 2013: North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. J. Geophys. Res. Atmos., 118, 26432655, https://doi.org/10.1002/jgrd.50273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, and R. A. Shaw, 2012: Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. Bound.-Layer Meteor., 145, 131143, https://doi.org/10.1007/s10546-011-9683-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, A., and M. Wendisch, 2001: Bursts of Aitken mode and ultrafine particles observed at the top of continental boundary layer clouds. J. Aerosol Sci., 32, 649660, https://doi.org/10.1016/S0021-8502(00)00102-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleissl, J., R. E. Honrath, M. Dziobak, D. Tanner, M. Martin, R. Owen, and D. Helmig, 2007: Occurrence of upslope flows at the Pico mountaintop observatory: A case study of orographic flows on a small, volcanic island. J. Geophys. Res., 112, D10S35, https://doi.org/10.1029/2006JD007565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2016: Development and applications of arm millimeter-wavelength cloud radars. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumala, W., K. E. Haman, M. Kopec, M. K. Khelif, and S. Malinowski, 2013: Ultrafast thermometer UFTM: High resolution temperature measurements during Physics of Stratocumulus Top (POST). J. Atmos. Oceanic Technol., 6, 2043–2054, https://doi.org/10.5194/amt-6-2043-2013.

    • Search Google Scholar
    • Export Citation
  • Lamer, K., B. P. Treserras, Z. Zhu, B. Isom, N. Bharadwaj, and P. Kollias, 2019: Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the eastern North Atlantic ARM observatory. Atmos. Meas. Tech., 12, 49314947, https://doi.org/10.5194/amt-12-4931-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lampert, A., and Coauthors, 2018: Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour. Atmos. Meas. Tech., 11, 25232536, https://doi.org/10.5194/amt-11-2523-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lance, C., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, https://doi.org/10.5194/amt-3-1683-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Coauthors, 1988: Dynamics and Chemistry on Marine Stratocumulus (DYCOMS) experiment. Bull. Amer. Meteor. Soc., 69, 10581067, https://doi.org/10.1175/1520-0477(1988)069<1058:DACOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malinowski, S. P., and Coauthors, 2013: Physics of Stratocumulus Top (POST): Turbulent mixing across capping inversion. Atmos. Chem. Phys., 13, 12 17112 186, https://doi.org/10.5194/acp-13-12171-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., P. Kollias, E. Luke, and R. Wood, 2012: Marine boundary layer cloud observations in the Azores. J. Climate, 25, 73817398, https://doi.org/10.1175/JCLI-D-11-00610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, https://doi.org/10.1080/027868290913988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schum, S., B. Zhang, K. Dzepina, P. Fialho, C. Mazzoleni, and L. Mazzoleni, 2018: Molecular and physical characteristics of aerosol at a remote free troposphere site: Implications for atmospheric aging. Atmos. Chem. Phys., 18, 14 01714 036, https://doi.org/10.5194/acp-18-14017-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., 2003: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183227, https://doi.org/10.1146/annurev.fluid.35.101101.161125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M., I. Brooks, and G. Canut, 2012: Evaluation of turbulent dissipation rate retrievals from Doppler cloud radar. Atmos. Meas. Tech., 5, 13751385, https://doi.org/10.5194/amt-5-1375-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., H. Franke, K. Lehmann, R. Maser, E. W. Saw, D. Schell, R. A. Shaw, and M. Wendisch, 2006: Probing fine-scale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Amer. Meteor. Soc., 87, 17271738, https://doi.org/10.1175/BAMS-87-12-1727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., K. Lehmann, and R. Shaw, 2007: On the use of a hot-wire anemometer for turbulence measurements in clouds. J. Atmos. Oceanic Technol., 24, 980993, https://doi.org/10.1175/JTECH2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H., R. A. Shaw, and Z. Warhaft, 2010: Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. J. Atmos. Sci., 67, 262273, https://doi.org/10.1175/2009JAS3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and Chemistry of Marine Stratocumulus—DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593, https://doi.org/10.1175/BAMS-84-5-Stevens.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., and B. A. Albrecht, 1994: Observations of cloud-top entrainment in marine stratocumulus clouds. J. Atmos. Sci., 51, 15301547, https://doi.org/10.1175/1520-0469(1994)051<1530:OOCTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, B., and Coauthors, 2010: Observations of turbulence-induced new particle formation in the residual layer. Atmos. Chem. Phys., 10, 43194330, https://doi.org/10.5194/acp-10-4319-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehner, B., F. Werner, F. Ditas, R. A. Shaw, M. Kulmala, and H. Siebert, 2015: Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds. Atmos. Chem. Phys., 15, 11 70111 711, https://doi.org/10.5194/acp-15-11701-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and J.-L. Brenguier, Eds., 2013: Airborne Measurements for Environmental Research: Methods and Instruments. Wiley-VCH Verlag, 641 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., T. J. Garrett, and J. W. Strapp, 2002: Wind tunnel tests of the airborne PVM-100A response to large drops. J. Atmos. Oceanic Technol., 19, 15771584, https://doi.org/10.1175/1520-0426(2002)019<1577:WTTOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, F., H. Siebert, P. Pilewskie, T. Schmeissner, R. A. Shaw, and M. Wendisch, 2013: New airborne retrieval approach for trade wind cumulus properties under overlying cirrus. J. Geophys. Res. Atmos., 118, 36343649, https://doi.org/10.1002/jgrd.50334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, F., and Coauthors, 2014: Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus. J. Geophys. Res. Atmos., 119, 15341545, https://doi.org/10.1002/2013JD020131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiedensohler, A., and Coauthors, 2012: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech., 5, 657685, https://doi.org/10.5194/amt-5-657-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, C. J., and Coauthors, 2019: A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 574, 399403, https://doi.org/10.1038/s41586-019-1638-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R., and Coauthors, 2015: Clouds, aerosol, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 408 pp.

All Time Past Year Past 30 Days
Abstract Views 3 3 0
Full Text Views 200 200 172
PDF Downloads 187 187 162

Observations of Aerosol, Cloud, Turbulence, and Radiation Properties at the Top of the Marine Boundary Layer over the Eastern North Atlantic Ocean: The ACORES Campaign

View More View Less
  • 1 Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
  • 2 Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
  • 3 Research Institute of Volcanology and Evaluation (IVAR), University of Azores, Ponta Delgada, Portugal
  • 4 Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, CNRS, Toulouse, France, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 5 Michigan Technological University, Houghton, Michigan
  • 6 Faculty of Physics, University of Warsaw, Warsaw, Poland
  • 7 Faculty of Physics, University of Warsaw, Warsaw, Poland, and European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany
  • 8 Brookhaven National Laboratory, Upton, New York
  • 9 Stony Brook University, State University of New York, Stony Brook, New York
  • 10 University of Seattle, Seattle, Washington
  • 11 Universitat Politècnica de Catalunya, Barcelona, Spain
© Get Permissions
Restricted access

Abstract

We report on the Azores Stratocumulus Measurements of Radiation, Turbulence and Aerosols (ACORES) campaign, which took place around Graciosa and Pico Islands/Azores in July 2017. The main objective was to investigate the vertical distribution of aerosol particles, stratocumulus microphysical and radiative properties, and turbulence parameters in the eastern North Atlantic. The vertical exchange of mass, momentum, and energy between the free troposphere (FT) and the cloudy marine boundary layer (MBL) was explored over a range of scales from submeters to kilometers. To cover these spatial scales with appropriate measurements, helicopter-borne observations with unprecedented high resolution were realized using the Airborne Cloud Turbulence Observation System (ACTOS) and Spectral Modular Airborne Radiation Measurement System–Helicopter-Borne Observations (SMART-HELIOS) instrumental payloads. The helicopter-borne observations were combined with ground-based aerosol measurements collected at two continuously running field stations on Pico Mountain (2,225 m above sea level, in the FT), and at the Atmospheric Radiation Measurement (ARM) station on Graciosa (at sea level). First findings from the ACORES observations we are discussing in the paper are as follows: (i) we have observed a high variability of the turbulent cloud-top structure on horizontal scales below 100 m with local temperature gradients of up to 4 K over less than 1 m vertical distance, (ii) we have collected strictly collocated radiation measurements supporting the relevance of small-scale processes by revealing significant inhomogeneities in cloud-top brightness temperature to scales well below 100 m, and (iii) we have concluded that aerosol properties are completely different in the MBL and FT with often-complex stratification and frequently observed burst-like new particle formation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Holger Siebert, siebert@tropos.de

Abstract

We report on the Azores Stratocumulus Measurements of Radiation, Turbulence and Aerosols (ACORES) campaign, which took place around Graciosa and Pico Islands/Azores in July 2017. The main objective was to investigate the vertical distribution of aerosol particles, stratocumulus microphysical and radiative properties, and turbulence parameters in the eastern North Atlantic. The vertical exchange of mass, momentum, and energy between the free troposphere (FT) and the cloudy marine boundary layer (MBL) was explored over a range of scales from submeters to kilometers. To cover these spatial scales with appropriate measurements, helicopter-borne observations with unprecedented high resolution were realized using the Airborne Cloud Turbulence Observation System (ACTOS) and Spectral Modular Airborne Radiation Measurement System–Helicopter-Borne Observations (SMART-HELIOS) instrumental payloads. The helicopter-borne observations were combined with ground-based aerosol measurements collected at two continuously running field stations on Pico Mountain (2,225 m above sea level, in the FT), and at the Atmospheric Radiation Measurement (ARM) station on Graciosa (at sea level). First findings from the ACORES observations we are discussing in the paper are as follows: (i) we have observed a high variability of the turbulent cloud-top structure on horizontal scales below 100 m with local temperature gradients of up to 4 K over less than 1 m vertical distance, (ii) we have collected strictly collocated radiation measurements supporting the relevance of small-scale processes by revealing significant inhomogeneities in cloud-top brightness temperature to scales well below 100 m, and (iii) we have concluded that aerosol properties are completely different in the MBL and FT with often-complex stratification and frequently observed burst-like new particle formation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Holger Siebert, siebert@tropos.de
Save