• Adler, B., and N. Kalthoff, 2014: Multi-scale transport processes observed in the boundary layer over a mountainous island. Bound.-Layer Meteor ., 153, 515537, https://doi.org/10.1007/s10546-014-9957-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, B., and N. Kalthoff, 2016: The impact of upstream flow on the atmospheric boundary layer in a valley on a mountainous island. Bound.-Layer Meteor ., 158, 429452, https://doi.org/10.1007/s10546-015-0092-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, B., N. Kalthoff, and O. Kiseleva, 2020: Detection of structures in the horizontal wind field over complex terrain using coplanar Doppler lidar scans. Meteor. Z., https://doi.org/10.1127/metz/2020/1031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baur, F., 2015: Determination of turbulent fluxes of airborne data in complex terrain using wavelet analysis. M.S. thesis, Dept. of Atmospheric and Cryospheric Sciences, University of Innsbruck, 139 pp., http://diglib.uibk.ac.at/urn:nbn:at:at-ubi:1-3205.

  • Bingöl, F., J. Mann, and D. Foussekis, 2009: Conically scanning lidar error in complex terrain. Meteor. Z., 18, 189195, https://doi.org/10.1127/0941-2948/2009/0368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2001: The MAP special observing period. Bull. Amer. Meteor. Soc., 82, 433462, https://doi.org/10.1175/1520-0477(2001)082<0433:TMSOP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brehm, M., 1982: Hangwindexperiment Innsbruck-Inversionsauflösung und Gebirgswindsystem. Ann. Meteor., 19, 150152, http://nbn-resolving.de/urn:nbn:de:101:1-201708172379.

    • Search Google Scholar
    • Export Citation
  • Brehm, M., and C. Freytag, 1982: Erosion of the night-time thermal circulation in an Alpine valley. Arch. Meteor. Geophys. Bioclimatol., 31B, 331352, https://doi.org/10.1007/BF02263439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calhoun, R., R. Heap, M. Princevac, R. Newsom, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45, 11161126, https://doi.org/10.1175/JAM2391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. sensor accuracy and synergy. Radio Sci ., 38, 8042, https://doi.org/10.1029/2002RS002634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans. Geosci. Remote Sens., 45, 21952201, https://doi.org/10.1109/TGRS.2006.888434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defant, F., 1951: Local winds. Compendium of Meteorology, T. M. Malone, Ed., Amer. Meteor. Soc., 655–672, https://doi.org/10.1007/978-1-940033-70-9_54.

    • Crossref
    • Export Citation
  • De Wekker, S. F., and M. Kossmann, 2015: Convective boundary layer heights over mountainous terrain – A review of concepts. Front. Earth Sci., 3, 77, https://doi.org/10.3389/feart.2015.00077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freytag, C., 1985: MERKUR-results: Aspects of the temperature field and the energy budget in a large Alpine valley during mountain and valley wind. Contrib. Atmos. Phys., 58, 458476.

    • Search Google Scholar
    • Export Citation
  • Freytag, C., 1987: Results from the MERKUR experiment: Mass budget and vertical motions in a large valley during mountain and valley wind. Meteor. Atmos. Phys., 37, 129140, https://doi.org/10.1007/BF01040843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goger, B., M. W. Rotach, A. Gohm, O. Fuhrer, I. Stiperski, and A. A. Holtslag, 2018: The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major Alpine valley. Bound.-Layer Meteor., 168, 127, https://doi.org/10.1007/s10546-018-0341-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goger, B., M. W. Rotach, A. Gohm, I. Stiperski, O. Fuhrer, and G. De Morsier, 2019: A new horizontal length scale for a three-dimensional turbulence parameterization in mesoscale atmospheric modeling over highly complex terrain. J. Appl. Meteor. Climatol., 58, 20872102, https://doi.org/10.1175/JAMC-D-18-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohm, A., G. Zängl, and G. J. Mayr, 2004: South foehn in the Wipp Valley on 24 October 1999 (MAP IOP 10): Verification of high-resolution numerical simulations with observations. Mon. Wea. Rev., 132, 78102, https://doi.org/10.1175/1520-0493(2004)132<0078:SFITWV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohm, A., and Coauthors, 2009: Air pollution transport in an Alpine valley: Results from airborne and ground-based observations. Bound.-Layer Meteor ., 131, 441463, https://doi.org/10.1007/s10546-009-9371-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haid, M., 2019: Marenha/doppler_wind_lidar_toolbox: First release (v1.0.0). Zenodo, https://doi.org/10.5281/zenodo.3583083.

    • Crossref
    • Export Citation
  • Haid, M., A. Gohm, L. Umek, H. C. Ward, T. Muschinski, L. Lehner, and M. W. Rotach, 2020: Foehn-cold pool interactions in the Inn Valley during PIANO IOP2. Quart. J. Roy. Meteor. Soc., 146, 12321263, https://doi.org/10.1002/qj.3735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnisch, F., A. Gohm, A. Fix, R. Schnitzhofer, A. Hansel, and B. Neininger, 2009: Spatial distribution of aerosols in the Inn Valley atmosphere during wintertime. Meteor. Atmos. Phys., 103, 223235, https://doi.org/10.1007/s00703-008-0318-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, M., R. Calhoun, H. Fernando, A. Wieser, A. Dörnbrack, M. Weissmann, G. Mayr, and R. Newsom, 2010: Coplanar Doppler lidar retrieval of rotors from T-REX. J. Atmos. Sci., 67, 713729, https://doi.org/10.1175/2009JAS3016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P. L., G. Mayr, and S. Vosper, 2013: Dynamically-driven winds. Mountain Weather Research and Forecasting, F. K. Chow, S. F. De Wekker, and B. J. Snyder, Eds., Springer, 121218, https://doi.org/10.1007/978-94-007-4098-3_3.

    • Crossref
    • Export Citation
  • Kalthoff, N., and Coauthors, 2013: KITcube – A mobile observation platform for convection studies deployed during HyMeX. Meteor. Z., 22, 633647, https://doi.org/10.1127/0941-2948/2013/0542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T., and Coauthors, 2020: Studying urban climate and air quality in the Alps: The Innsbruck Atmospheric Observatory. Bull. Amer. Meteor. Soc., 101, E488E507, https://doi.org/10.1175/BAMS-D-19-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., and T. H. O’Neill, 1981: ALPEX the GARP mountain subprogram. Bull. Amer. Meteor. Soc., 62, 793805, https://doi.org/10.1175/1520-0477-62.6.793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., and M. W. Rotach, 2018: Current challenges in understanding and predicting transport and exchange in the atmosphere over mountainous terrain. Atmosphere, 9, 276, https://doi.org/10.3390/atmos9070276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, M., M. W. Rotach, and F. Obleitner, 2019: A method to identify synoptically undisturbed, clear-sky conditions for valley-wind analysis. Bound.-Layer Meteor ., 173, 435450, https://doi.org/10.1007/s10546-019-00471-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leukauf, D., A. Gohm, and M. W. Rotach, 2017: Toward generalizing the impact of surface heating, stratification and terrain geometry on the daytime heat export from an idealized valley. J. Appl. Meteor. Climatol., 56, 27112727, https://doi.org/10.1175/JAMC-D-16-0378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032, https://doi.org/10.1175/2008JAMC2060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallaun, C., A. Giez, and R. Baumann, 2015: Calibration of 3-D wind measurements on a single-engine research aircraft. Atmos. Meas. Tech., 8, 31773196, https://doi.org/10.5194/amt-8-3177-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massaro, G., I. Stiperski, B. Pospichal, and M. W. Rotach, 2015: Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8, 33553367, https://doi.org/10.5194/amt-8-3355-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, T., A. Gohm, M. Haid, L. Umek, and H. C. Ward, 2021: Spatial heterogeneity of the Inn Valley cold air pool during south foehn: Observations from an array of temperature loggers during PIANO. Meteor. Z., https://doi.org/10.1127/metz/2020/1043, in press.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., R. Calhoun, D. Ligon, and J. Allwine, 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor ., 127, 111130, https://doi.org/10.1007/s10546-007-9243-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, G., 2018: Reliable data - continuous wave lidars can provide more accurate wind measurements with high resolution at short distances. Meteorological Technology International, September issue, 106108, www.ukimediaevents.com/publication/8511a42f/1.

    • Search Google Scholar
    • Export Citation
  • Plavcan, D., G. J. Mayr, and A. Zeileis, 2014: Automatic and probabilistic foehn diagnosis with a statistical mixture model. J. Appl. Meteor. Climatol., 53, 652659, https://doi.org/10.1175/JAMC-D-13-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichardt, J., U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, 2012: RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Appl. Opt., 51, 81118131, https://doi.org/10.1364/AO.51.008111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary-layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, https://doi.org/10.1002/QJ.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., G. Wohlfahrt, A. Hansel, M. Reif, J. Wagner, and A. Gohm, 2014: The world is not flat: Implications for the global carbon balance. Bull. Amer. Meteor. Soc., 95, 10211028, https://doi.org/10.1175/BAMS-D-13-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2017: Investigating exchange processes over complex topography: The Innsbruck Box (i-Box). Bull. Amer. Meteor. Soc., 98, 787805, https://doi.org/10.1175/BAMS-D-15-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and Coauthors, 2020: Multi-Scale Transport and Exchange Processes in the Atmosphere Over Mountains. Innsbruck University Press, 42 pp., https://doi.org/10.15203/99106-003-1.

    • Crossref
    • Export Citation
  • Rucker, M., R. M. Banta, and D. G. Steyn, 2008: Along-valley structure of daytime thermally driven flows in the Wipp Valley. J. Appl. Meteor. Climatol., 47, 733751, https://doi.org/10.1175/2007JAMC1319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidli, J., 2013: Daytime heat transfer processes over mountainous terrain. J. Atmos. Sci., 70, 40414066, https://doi.org/10.1175/JAS-D-13-083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schnitzhofer, R., and Coauthors, 2009: A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime. Atmos. Chem. Phys., 9, 33853396, https://doi.org/10.5194/acpd-9-3983-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., and D. Zardi, 2010: Daytime heat transfer processes related to slope flows and turbulent convection in an idealized mountain valley. J. Atmos. Sci., 67, 37393756, https://doi.org/10.1175/2010JAS3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., L. Strauss, and V. Grubišić, 2017: Climatology of westerly wind events in the lee of the Sierra Nevada. J. Appl. Meteor. Climatol., 56, 10031023, https://doi.org/10.1175/JAMC-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., and Coauthors, 2018: Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 9, 102, https://doi.org/10.3390/atmos9030102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sfyri, E., M. W. Rotach, I. Stiperski, F. C. Bosveld, M. Lehner, and F. Obleitner, 2018: Scalar-flux similarity in the layer near the surface over mountainous terrain. Bound.-Layer Meteor., 169, 1146, https://doi.org/10.1007/s10546-018-0365-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stawiarski, C., K. Träumner, C. Knigge, and R. Calhoun, 2013: Scopes and challenges of dual-Doppler lidar wind measurements—An error analysis. J. Atmos. Oceanic Technol., 30, 20442062, https://doi.org/10.1175/JTECH-D-12-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., S. F. J. De Wekker, M. Kossmann, and A. Martilli, 2013: Boundary layers and air quality in mountainous terrain. Mountain Weather Research and Forecasting, F. K. Chow, S. F. De Wekker, and B. J. Snyder, Eds., Springer, 261289, https://doi.org/10.1007/978-94-007-4098-3_5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stiperski, I., and M. W. Rotach, 2016: On the measurement of turbulence over complex mountainous terrain. Bound.-Layer Meteor ., 159, 97121, https://doi.org/10.1007/s10546-015-0103-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stiperski, I., M. Calaf, and M. W. Rotach, 2019: Scaling, anisotropy, and complexity in near-surface atmospheric turbulence. J. Geophys. Res. Atmos., 124, 14281448, https://doi.org/10.1029/2018JD029383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, L., S. Serafin, and V. Grubišić, 2016: Atmospheric rotors and severe turbulence in a long deep valley. J. Atmos. Sci., 73, 14811506, https://doi.org/10.1175/JAS-D-15-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Träumner, K., T. Damian, C. Stawiarski, and A. Wieser, 2015: Turbulent structures and coherence in the atmospheric surface layer. Bound.-Layer Meteor., 154, 125, https://doi.org/10.1007/s10546-014-9967-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., 1982: Eine energetische Theorie der Hangwinde. Ann. Meteor ., 19, 189191, http://nbn-resolving.de/urn:nbn:de:101:1-201708172379.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., and E. Dreiseitl, 1987: Valley winds and slope winds—Observations and elementary thoughts. Meteor. Atmos. Phys., 36, 264286, https://doi.org/10.1007/BF01045154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, J., A. Gohm, and M. Rotach, 2015: The impact of valley geometry on daytime thermally driven flows and vertical transport processes. Quart. J. Roy. Meteor. Soc., 141, 17801794, https://doi.org/10.1002/qj.2481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., and M. W. Rotach, 2004: Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 26052627, https://doi.org/10.1256/qj.03.214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., and Coauthors, 2018: The nocturnal evolution of atmospheric structure in a basin as a larger-scale katabatic flow is lifted over its rim. J. Appl. Meteor. Climatol., 57, 969989, https://doi.org/10.1175/JAMC-D-17-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wildmann, N., S. Kigle, and T. Gerz, 2018: Coplanar lidar measurement of a single wind energy converter wake in distinct atmospheric stability regimes at the Perdigão 2017 experiment. J. Phys.: Conf. Ser., 1037, 052006, https://doi.org/10.1088/1742-6596/1037/5/052006.

    • Search Google Scholar
    • Export Citation
  • Wittkamp, N., B. Adler, N. Kalthoff, and O. Kiseleva, 2021: Mesoscale wind patterns over the complex urban terrain around Stuttgart investigated with dual-Doppler lidar profiles. Meteor. Z ., https://doi.org/10.1127/metz/2020/1029, in press.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations. Meteor. Atmos. Phys., 87, 241256, https://doi.org/10.1007/s00703-003-0056-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2009: The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley. Meteor. Atmos. Phys., 105, 3753, https://doi.org/10.1007/s00703-009-0030-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. J. Snyder, Eds., Springer, 35–119, https://doi.org/10.1007/978-94-007-4098-3_2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 4
Full Text Views 41 41 41
PDF Downloads 46 46 46

CROSSINN: A Field Experiment to Study the Three-Dimensional Flow Structure in the Inn Valley, Austria

View More View Less
  • 1 Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 2 University of Innsbruck, Innsbruck, Austria
  • 3 Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 4 Karlsruhe Institute of Technology, Karlsruhe, Germany
  • 5 University of Innsbruck, Innsbruck, Austria
  • 6 METEX GmbH, Elmshorn, Germany
  • 7 Raymetrics S.A., Athens, Greece
© Get Permissions
Restricted access

Abstract

While the exchange of mass, momentum, moisture, and energy over horizontally homogeneous, flat terrain is mostly driven by vertical turbulent mixing, thermally and dynamically driven mesoscale flows substantially contribute to the Earth–atmosphere exchange in the atmospheric boundary layer over mountainous terrain (MoBL). The interaction of these processes acting on multiple scales leads to a large spatial variability in the MoBL, whose observational detection requires comprehensive instrumentation and a sophisticated measurement strategy. We designed a field campaign that targets the three-dimensional flow structure and its impact on the MoBL in a major Alpine valley. Taking advantage of an existing network of surface flux towers and remote sensing instrumentation in the Inn Valley, Austria, we added a set of ground-based remote sensing instruments, consisting of Doppler lidars, a ceilometer, a Raman lidar, and a microwave radiometer, and performed radio soundings and aircraft measurements. The objective of the Cross-Valley Flow in the Inn Valley Investigated by Dual-Doppler Lidar Measurements (CROSSINN) experiment is to determine the mean and turbulent characteristics of the flow in the MoBL under different synoptic conditions and to provide an intensive dataset for the future validation of mesoscale and large-eddy simulations. A particular challenge is capturing the two-dimensional kinematic flow in a vertical plane across the whole valley using coplanar synchronized Doppler lidar scans, which allows the detection of cross-valley circulation cells. This article outlines the scientific objectives, instrument setup, measurement strategy, and available data; summarizes the synoptic conditions during the measurement period of 2.5 months; and presents first results.

Current affiliation: CIRES, University of Colorado Boulder, and NOAA/Physical Sciences Laboratory, Boulder, Colorado

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bianca Adler, bianca.adler@noaa.gov

Abstract

While the exchange of mass, momentum, moisture, and energy over horizontally homogeneous, flat terrain is mostly driven by vertical turbulent mixing, thermally and dynamically driven mesoscale flows substantially contribute to the Earth–atmosphere exchange in the atmospheric boundary layer over mountainous terrain (MoBL). The interaction of these processes acting on multiple scales leads to a large spatial variability in the MoBL, whose observational detection requires comprehensive instrumentation and a sophisticated measurement strategy. We designed a field campaign that targets the three-dimensional flow structure and its impact on the MoBL in a major Alpine valley. Taking advantage of an existing network of surface flux towers and remote sensing instrumentation in the Inn Valley, Austria, we added a set of ground-based remote sensing instruments, consisting of Doppler lidars, a ceilometer, a Raman lidar, and a microwave radiometer, and performed radio soundings and aircraft measurements. The objective of the Cross-Valley Flow in the Inn Valley Investigated by Dual-Doppler Lidar Measurements (CROSSINN) experiment is to determine the mean and turbulent characteristics of the flow in the MoBL under different synoptic conditions and to provide an intensive dataset for the future validation of mesoscale and large-eddy simulations. A particular challenge is capturing the two-dimensional kinematic flow in a vertical plane across the whole valley using coplanar synchronized Doppler lidar scans, which allows the detection of cross-valley circulation cells. This article outlines the scientific objectives, instrument setup, measurement strategy, and available data; summarizes the synoptic conditions during the measurement period of 2.5 months; and presents first results.

Current affiliation: CIRES, University of Colorado Boulder, and NOAA/Physical Sciences Laboratory, Boulder, Colorado

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bianca Adler, bianca.adler@noaa.gov
Save