• Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res., 110, D23107, https://doi.org/10.1029/2005JD006119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ali, H., and V. Mishra, 2017: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep., 7, 1228, https://doi.org/10.1038/s41598-017-01306-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Hafner, K. P. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South Asia. J. Climate, 26, 27012718, https://doi.org/10.1175/JCLI-D-12-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhowmick, M., S. Sahany, and S. K. Mishra, 2019: Projected precipitation changes over the south Asian region for every 0.5°C increase in global warming. Environ. Res. Lett., 14, 054005, https://doi.org/10.1088/1748-9326/ab1271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. R., A. F. Moise, and R. A. Colman, 2017: Projected increases in daily to decadal variability of Asian-Australian monsoon rainfall. Geophys. Res. Lett., 44, 56835690, https://doi.org/10.1002/2017GL073217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., C. M. Carrillo, D. J. Gochis, D. M. Hammerling, R. R. McCrary, and L. O. Mearns, 2015: Toward assessing NARCCAP regional climate model credibility for the North American monsoon: Future climate simulations. J. Climate, 28, 67076728, https://doi.org/10.1175/JCLI-D-14-00695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and T. Schneider, 2016: Narrowing of the ITCZ in a warming climate: Physical mechanisms. Geophys. Res. Lett., 43, 11 35011 357, https://doi.org/10.1002/2016GL070396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and R. Thomas, 2019: Dynamics of ITCZ width: Ekman processes, non-Ekman processes, and links to sea surface temperature. J. Atmos. Sci., 76, 28692884, https://doi.org/10.1175/JAS-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and L. Zanna, 2020: Radiative effects of clouds and water vapor on an axisymmetric monsoon. J. Climate, 33, 87898811, https://doi.org/10.1175/JCLI-D-19-0974.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattani, E., A. Merino, J. A. Guijarro, and V. Levizzani, 2018: East Africa rainfall trends and variability 1983–2015 using three long-term satellite products. Remote Sens ., 10, 931, https://doi.org/10.3390/rs10060931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Z. Wang, J. McBride, and C. H. Liu, 2005: Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, https://doi.org/10.1175/JCLI-3257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., Y. Lei, C.-H. Sui, X. Lin, and F. Ren, 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett., 39, L18702, https://doi.org/10.1029/2012GL052945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., M. Ghil, H. C. Kuo, M. Latif, C. H. Sui, and J. M. Wallace, 2014: Understanding multidecadal climate changes. Bull. Amer. Meteor. Soc., 95, 293296, https://doi.org/10.1175/BAMS-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and T. Zhou, 2015: Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett., 42, 94339439, https://doi.org/10.1002/2015GL066384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., T. Zhou, P. Wu, Z. Guo, and M. Wang, 2020: Emergent constraints on future projections of the western North Pacific subtropical high. Nat. Commun., 11, 2802, https://doi.org/10.1038/s41467-020-16631-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global Land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Chu, J.-E., K.-M. Kim, W. K. M. Lau, and K.-J. Ha, 2018: How light absorbing properties of organic aerosol modify the Asian summer monsoon rainfall? J. Geophys. Res. Atmos., 123, 22442255, https://doi.org/10.1002/2017JD027642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2019: Extremes, abrupt changes and managing risk. IPCC Special Report on Oceans and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Cambridge University Press, 589–655.

  • Colorado-Ruiz, G., T. Cavazos, J. A. Salinas, P. De Grau, and R. Ayala, 2018: Climate change projections from Coupled Model Intercomparison Project phase 5 multi-model weighted ensembles for Mexico, the North American monsoon, and the mid-summer drought region. Int. J. Climatol., 38, 56995716, https://doi.org/10.1002/joc.5773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/JGRD.50111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2013: Projected changes in East African rainy seasons. J. Climate, 26, 59315948, https://doi.org/10.1175/JCLI-D-12-00455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2019: Congo Basin drying associated with poleward shifts of African thermal lows. Climate Dyn ., 54, 863883, https://doi.org/10.1007/s00382-019-05033-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Creese, A., and R. Washington, 2016: Using qflux to constrain modeled Congo Basin rainfall in the CMIP5 ensemble. J. Geophys. Res. Atmos., 121, 13 41513 442, https://doi.org/10.1002/2016JD025596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, J., S. Piao, C. Huntingford, X. Wang, X. Lian, A. Chevuturi, A. G. Turner, and G. J. Kooperman, 2020: Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun., 11, 5184, https://doi.org/10.1038/s41467-020-18992-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Agostino, R., J. Bader, S. Bordoni, D. Ferreira, and J. Jungclaus, 2019: Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett., 46, 15911601, https://doi.org/10.1029/2018GL081589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dey, R., S. C. Lewis, J. M. Arblaster, and N. J. Abram, 2019: A review of past and projected changes in Australia’s rainfall. Wiley Interdiscip. Rev. Climate Change, 10, e577, https://doi.org/10.1002/wcc.577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Sun, Z. Wang, Y. Zhu, and Y. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol., 29, 19261944, https://doi.org/10.1002/joc.1759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., L. J. Wilcox, E. J. Highwood, and R. T. Sutton, 2019: Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: Roles of aerosol–radiation and aerosol–cloud interactions. Climate Dyn ., 53, 32353256, https://doi.org/10.1007/s00382-019-04698-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., P. Brando, G. P. Asner, and C. B. Field, 2015: Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 13 17213 177, https://doi.org/10.1073/pnas.1421010112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., A. Kitoh, T. Ose, R. Mizuta, and S. Kusunoki, 2012: Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi–sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res., 117, D16118, https://doi.org/10.1029/2012JD017874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., A. Kitoh, and H. Ueda, 2018: A unique feature of the Asian summer monsoon response to global warming: The role of different land–sea thermal contrast change between the lower and upper troposphere. SOLA, 14, 5763, https://doi.org/10.2151/SOLA.2018-010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, R., and Coauthors, 2013: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA, 110, 18 11018 115, https://doi.org/10.1073/pnas.1302584110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geil, K. L., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, https://doi.org/10.1175/JCLI-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., and A. Kaplan, 2019: The role of aerosols and greenhouse gases in Sahel drought and recovery. Climatic Change, 152, 449466, https://doi.org/10.1007/s10584-018-2341-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonzalez, P. L. M., L. M. Polvani, R. Seager, and G. J. Correa, 2014: Stratospheric ozone depletion: A key driver of recent precipitation trends in south eastern South America. Climate Dyn ., 42, 17751792, https://doi.org/10.1007/s00382-013-1777-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Venugopal, D. Sengupta, M. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445, https://doi.org/10.1126/science.1132027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2011: Interannual climate variability in South America: Impacts on seasonal precipitation, extreme events and possible effects of climate change. Stochastic Environ. Res. Risk Assess., 25, 537554, https://doi.org/10.1007/s00477-010-0420-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and J. P. J. Saboia, 2015: Interdecadal variability of the South American precipitation in the monsoon season. J. Climate, 28, 755775, https://doi.org/10.1175/JCLI-D-14-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., J. Pal, and F. Giorgi, 2007: Connection between spring conditions and peak summer monsoon rainfall in South America: Role of soil moisture, surface temperature, and topography in eastern Brazil. J. Climate, 20, 59295945, https://doi.org/10.1175/2007JCLI1684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., B.-H. Kim, E. S. Chung, J. C. L. Chan, and C.-P. Chang, 2020a: Major factors of global and regional monsoon rainfall changes: Natural versus anthropogenic forcing. Environ. Res. Lett., 15, 034055, https://doi.org/10.1088/1748-9326/ab7767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., S. Moon, A. Timmermann, and D. Kim, 2020b: Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys. Res. Lett., 47, e2020GL087492, https://doi.org/10.1029/2020GL087492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, F., K. H. Cook, and E. K. Vizy, 2019: Changes in intense rainfall events and dry periods across Africa in the twenty-first century. Climate Dyn ., 53, 27572777, https://doi.org/10.1007/s00382-019-04653-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., S. Yang, and Z. Li, 2017: Influence of latent heating over the Asian and western Pacific monsoon region on Sahel summer rainfall. Sci. Rep., 7, 7680, https://doi.org/10.1038/s41598-017-07971-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, R. J., A. Giannini, M. Biasutti, and Y. Kushnir, 2020: The effects of anthropogenic and volcanic aerosols and greenhouse gases on 20th century Sahel precipitation. Sci. Rep., 10, 12203, https://doi.org/10.1038/s41598-020-68356-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hilker, T., and Coauthors, 2014: Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA, 111, 16 04116 046, https://doi.org/10.1073/pnas.1404870111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., 2019: Theories for past and future monsoon rainfall changes. Curr. Climate Change Rep., 5, 160171, https://doi.org/10.1007/s40641-019-00137-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., T. Li, H. Murakami, and A. Kitoh, 2013: Future change of the global monsoon revealed from 19 CMIP5 models. J. Geophys. Res. Atmos., 118, 12471260, https://doi.org/10.1002/JGRD.50145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., T. Zhou, A. Dai, H. Li, C. Li, X. Chen, J. Lu, J.-S. von Storch, and B. Wu, 2020a: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Sci. Adv., 6, eaay6546, https://doi.org/10.1126/sciadv.aay6546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., and Coauthors, 2020b: The recent decline and recovery of Indian summer monsoon rainfall: Relative roles of external forcing and internal variability. J. Climate, 33, 50355060, http://doi.org/10.1175/JCLI-D-19-0833.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jalihal, C., J. Srinivasan, and A. Chakraborty, 2019: Modulation of Indian monsoon by water vapor and cloud feedback over the past 22,000 years. Nat. Commun., 10, 5701, https://doi.org/10.1038/s41467-019-13754-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., and T. Zhou, 2019: Global monsoon responses to decadal sea surface temperature variations during the twentieth century: Evidence from AGCM simulations. J. Climate, 32, 76757695, http://doi.org/10.1175/JCLI-D-18-0890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Y. Luo, D.-L. Zhang, and M. Wu, 2020: Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River Delta. J. Climate, 33, 58095826, http://doi.org/10.1175/JCLI-D-19-0884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C., B. Wang, and J. Liu, 2020: Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models. J. Climate, 33, 93079326, https://doi.org/10.1175/JCLI-D-20-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Q., and C. Wang, 2017: A revival of Indian summer monsoon rainfall since 2002. Nat. Climate Change, 7, 587594, https://doi.org/10.1038/nclimate3348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., A. S. Gupta, A. S. Taschetto, C. C. Ummenhofer, A. F. Moise, and K. Ashok, 2013: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dyn ., 41, 30733102, https://doi.org/10.1007/s00382-013-1676-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawase, H., Y. Imada, H. Sasaki, T. Nakaegawa, A. Murata, M. Nosaka, and I. Talayabu, 2019: Contribution of historical global warming to local-scale heavy precipitation in western Japan estimated by large ensemble high-resolution simulations. J. Geophys. Res. Atmos., 124, 60936103, https://doi.org/10.1029/2018JD030155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., R. A. Stratton, S. Tucker, J. H. Marsham, S. Berthou, D. P. Rowell, and C. A. Senior, 2019: Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun., 10, 1794, https://doi.org/10.1038/s41467-019-09776-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2017: The Asian monsoon and its future change in climate models: A review. J. Meteor. Soc. Japan, 95, 733, https://doi.org/10.2151/jmsj.2017-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, https://doi.org/10.1002/JGRD.50258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, 19872007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn ., 21, 233242, https://doi.org/10.1007/s00382-003-0330-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and Coauthors, 2013: Will the South Asian monsoon overturning circulation stabilize any further? Climate Dyn ., 40, 187211, https://doi.org/10.1007/s00382-012-1317-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and Coauthors, 2016: Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate Dyn ., 47, 10071027, https://doi.org/10.1007/s00382-015-2886-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, https://doi.org/10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and K.-M. Kim, 2017: Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pac. J. Atmos. Sci., 53, 181194, https://doi.org/10.1007/s13143-017-0033-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2014: Future change of global monsoon in the CMIP5. Climate Dyn ., 42, 101119, https://doi.org/10.1007/s00382-012-1564-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., K.-S. Yun, Y.-M. Yang, E.-S. Chung, and A. Babu, 2019: Challenges in constraining future change of global land precipitation in CMIP6 models. WMO Workshop on Monsoon Climate Change Assessment, Zhuhai, China, WMO, https://www.dropbox.com/s/voeviol0qkgbuof/June-Yi%20Lee.pdf?dl=0.

  • Li, J., and B. Wang, 2018: Origins of the decadal predictability of East Asian land summer monsoon rainfall. J. Climate, 31, 62296243, https://doi.org/10.1175/JCLI-D-17-0790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Z. Wu, Z. Jiang, and J. He, 2010: Can global warming strengthen the East Asian summer monsoon? J. Climate, 23, 66966705, https://doi.org/10.1175/2010JCLI3434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., J. Yu, and Y. Li, 2013: Recent summer rainfall increase and surface cooling over northern Australia since the late 1970s: A response to warming in the tropical western Pacific. J. Climate, 26, 72217239, https://doi.org/10.1175/JCLI-D-12-00786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2016: Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866929, https://doi.org/10.1002/2015RG000500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. Sun, T. Li, Y. Ding, and T. Hu, 2019: Future changes in East Asian summer monsoon circulation and precipitation under 1.5° to 5°C of warming. Earth’s Future, 7, 13911406, https://doi.org/10.1029/2019EF001276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and Coauthors, 2014: Understanding recent Horn of Africa rainfall variability and change. J. Climate, 27, 86308645, https://doi.org/10.1175/JCLI-D-13-00714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, Q. H. Ding, X. Y. Kuang, W. Soon, and E. Zorita, 2009: Centennial variations of the global monsoon precipitation in the last millennium: Results from ECHO-G model. J. Climate, 22, 23562371, https://doi.org/10.1175/2008JCLI2353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., B. Wang, M. A. Cane, S.-Y. Yim, and J.-Y. Lee, 2013: Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493, 656659, https://doi.org/10.1038/nature11784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lodoun, T., A. Giannini, P. S. Traoreì, L. Someì, M. Sanon, M. Vaksmann, and J. M. Rasolodimby, 2013: Changes in seasonal descriptors of precipitation in Burkina Faso associated with late 20th century drought and recovery in West Africa. Environ. Dev., 5, 96108, https://doi.org/10.1016/j.envdev.2012.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., C. L. Castro, H.-I. Chang, T. Lahmers, D. K. Adams, and C. A. Ochoa-Moya, 2017: The more extreme nature of North American monsoon precipitation in the southwestern U.S. as revealed by a historical climatology of simulated severe weather events. J. Appl. Meteor. Climatol., 56, 25092529, https://doi.org/10.1175/JAMC-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, N., and Coauthors, 2019: The Max Planck Institute grand ensemble: Enabling the exploration of climate system variability. J. Adv. Model. Earth Syst., 11, 20502069, https://doi.org/10.1029/2019MS001639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., R. P. Allan, and E. Black, 2015: Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett., 42, 81558164, https://doi.org/10.1002/2015GL065765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre, 2008: Climate change, deforestation, and the fate of the Amazon. Science, 319, 169172, https://doi.org/10.1126/science.1146961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., Á. F. Adames, and H. X. Bui, 2019: Madden–Julian oscillation changes under anthropogenic warming. Nat. Climate Change, 9, 2633, https://doi.org/10.1038/s41558-018-0331-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Biasutti, and C. Bonfils, 2020: Fingerprints of external forcing agents on Sahel rainfall: Aerosols, greenhouse gases, and model-observation discrepancies. Environ. Res. Lett., 15, 084023, https://doi.org/10.1088/1748-9326/ab858e.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, S., and K. J. Ha, 2017: Temperature and precipitation in the context of the annual cycle over Asia: Model evaluation and future change. Asia-Pac. J. Atmos. Sci., 53, 229242, https://doi.org/10.1007/s13143-017-0024-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moise, A., I. Smith, J. R. Brown, R. Colman, and S. Narsey, 2020: Observed and projected intra-seasonal variability of Australian monsoon rainfall. Int. J. Climatol., 40, 23102327, https://doi.org/10.1002/joc.6334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., B. B. Booth, C. A. Boulton, R. T. Clark, G. R. Harris, J. A. Lowe, and D. M. H. Sexton, 2014: Transient climate changes in a perturbed parameter ensemble of emissions-driven Earth system model simulations. Climate Dyn ., 43, 28552885, https://doi.org/10.1007/s00382-014-2097-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012GL053421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., C. Landsea, and J. Gill, 1998: Recent trends in Australian region tropical cyclone activity. Meteor. Atmos. Phys., 65, 197205, https://doi.org/10.1007/BF01030788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., Y. Zhao, A. Ruiz-Barradas, and T. Zhou, 2015: The south-flood north-drought pattern over eastern China and the drying of the Gangetic Plain. Climate Change: Multidecadal and Beyond, C. P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 6, World Scientific, 347–359, https://doi.org/10.1142/9789814579933_0022.

    • Crossref
    • Export Citation
  • Oh, H., K.-J. Ha, and A. Timmermann, 2018: Disentangling impacts of dynamic and thermodynamic components on late summer rainfall anomalies in East Asia. J. Geophys. Res. Atmos., 123, 86238633, https://doi.org/10.1029/2018JD028652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omondi, P., L. A. Ogallo, R. Anya, J. M. Muthama, and J. Ininda, 2013: Linkages between global sea surface temperatures and decadal rainfall variability over Eastern Africa region. Int. J. Climatol., 33, 20822104, https://doi.org/10.1002/joc.3578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panthou, G., T. Vischel, and T. Lebel, 2014: Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol., 34, 39984006, https://doi.org/10.1002/joc.3984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., L. M. Carvalho, D. K. Adams, C. L. Castro, and I. F. A. Cavalcanti, 2019: Current and future variations of the monsoons of the Americas in a warming climate. Curr. Climate Change Rep., 5, 125144, https://doi.org/10.1007/s40641-019-00135-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., M. Bollasina, G. C. Hegerl, and L. J. Wilcox, 2014: Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett., 41, 60236029, https://doi.org/10.1002/2014GL060811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2016: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, https://doi.org/10.1175/JAS3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, T. B., and Coauthors, 2018: Drivers of precipitation change: An energetic understanding. J. Climate, 31, 96419657, https://doi.org/10.1175/JCLI-D-17-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and Coauthors, 2007: Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J. Geophys. Res., 112, D09202, https://doi.org/10.1029/2006JD007712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., S. Ghosh, A. Pathak, R. Athulya, M. Mujumdar, R. Murtugudde, P. Terray, and M. Rajeevan, 2017: A threefold rise in widespread extreme rain events over central India. Nat. Commun., 8, 708, https://doi.org/10.1038/s41467-017-00744-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabeerali, C., and R. Ajayamohan, 2017: On the shortening of Indian summer monsoon season in a warming scenario. Climate Dyn ., 50, 16091624, https://doi.org/10.1007/s00382-017-3709-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, M., 2016: Global warming without global mean precipitation increase? Sci. Adv., 2, e1501572, https://doi.org/10.1126/sciadv.1501572.

  • Salzmann, M., and R. Cherian, 2015: On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century. J. Geophys. Res. Atmos., 120, 91039118, https://doi.org/10.1002/2015JD023313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salzmann, M., H. Weser, and R. Cherian, 2014: Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. J. Geophys. Res. Atmos., 119, 11 32111 337, https://doi.org/10.1002/2014JD021783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanogo, S., A. H. Fink, J. A. Omotosho, A. Ba, R. Redl, and V. Ermert, 2015: Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Climatol., 35, 45894605, https://doi.org/10.1002/joc.4309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarr, M. A., M. Zoromeì, O. Seidou, C. R. Bryant, and P. Gachon, 2013: Recent trends in selected extreme precipitation indices in Senegal–A changepoint approach. J. Hydrol., 505, 326334, https://doi.org/10.1016/j.jhydrol.2013.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Biasutti, A. Giannini, S. J. Carmargo, and M. Rojas, 2013: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Climate, 26, 73287351, https://doi.org/10.1175/JCLI-D-12-00726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharmila, S., S. Joseph, A. Sahai, S. Abhilash, and R. Chattopadhyay, 2015: Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global Planet. Change, 124, 6278, https://doi.org/10.1016/j.gloplacha.2014.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shawki, D., Voulgarakis, A., Chakraborty, A., Kasoar, M., and J. Srinivasan, 2018: The South Asian monsoon response to remote aerosols: Global and regional mechanisms, J. Geophys. Res. Atmos., 123, 11 58511 601, https://doi.org/10.1029/2018JD028623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, H., B. Wang, E. D. Cook, J. Liu, and F. Liu, 2018: Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records. J. Climate, 31, 78457861, https://doi.org/10.1175/JCLI-D-18-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. P., A. G. Turner, A. Chevuturi, L. Wilcox, A. J. Dittus, and E. Hawkins, 2020: Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20th century. Atmos. Chem. Phys., 20, 14 90314 915, https://doi.org/10.5194/acp-20-14903-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2016: Tropical Pacific impacts on cooling North American winters. Nat. Climate Change, 6, 970974, https://doi.org/10.1038/nclimate3069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., S. Ghosh, M. K. Roxy, and S. McDermid, 2019: Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdiscip. Rev. Climate Change, 10, e571, https://doi.org/10.1002/wcc.571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skansi, M. M., and Coauthors, 2013: Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global Planet. Change, 100, 295307, https://doi.org/10.1016/j.gloplacha.2012.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comput. Fluid Dyn., 20, 323350, https://doi.org/10.1007/s00162-006-0033-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sontakke, N. A., N. Singh, and H. N. Singh, 2008: Instrumental period rainfall series of the Indian region (AD 1813-2005): Revised reconstruction, update and analysis. Holocene, 18, 10551066, https://doi.org/10.1177/0959683608095576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sooraj, K., P. Terray, and P. Xavier, 2016: Sub-seasonal behaviour of Asian summer monsoon under a changing climate: Assessments using CMIP5 models. Climate Dyn ., 46, 40034025, https://doi.org/10.1007/s00382-015-2817-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn ., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., and Coauthors, 2017: Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature, 544, 475478, https://doi.org/10.1038/nature22069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. H. Fink, C. Klein, D. J. Parker, F. Guichard, P. P. Harris, and K. R. Knapp, 2018: Earlier seasonal onset of intense mesoscale convective systems in the Congo Basin since 1999. Geophys. Res. Lett., 45, 13 45813 467, https://doi.org/10.1029/2018GL080516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, A. G., and Coauthors, 2020: Interaction of convective organisation with monsoon precipitation, atmosphere, surface and Sea: The 2016 INCOMPASS field campaign in India. Quart. J. Roy. Meteor. Soc., 146, 28282852, https://doi.org/10.1002/qj.3633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C. S., and L. Diaz, 2015: Anthropogenic influence on summer precipitation trends over South America in CMIP5 models. Int. J. Climatol., 35, 31723177, https://doi.org/10.1002/joc.4153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, L06711, https://doi.org/10.1029/2005GL025347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Ocean, 44, 165183, https://doi.org/10.1016/j.dynatmoce.2007.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Ding, and J. Jhun, 2006: Trends in Seoul (1778–2004) summer precipitation. Geophys. Res. Lett., 33, L15803, https://doi.org/10.1029/2006GL026418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S. Y. Yim, 2012: Recent change of the global monsoon precipitation (1979-2008). Climate Dyn ., 39, 11231135, https://doi.org/10.1007/s00382-011-1266-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H. J. Kim, P. J. Webster, S.-Y. Yim, and B. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Niño/Southern Oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, https://doi.org/10.1073/pnas.1219405110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., S.-Y. Yim, J.-Y. Lee, J. Liu, and K.-J. Ha, 2014: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dyn ., 42, 83100, https://doi.org/10.1007/s00382-013-1769-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2018: Toward predicting changes in land monsoon rainfall a decade in advance. J. Climate, 31, 26992714, https://doi.org/10.1175/JCLI-D-17-0521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models . J. Climate, 33, 64716489, https://doi.org/10.1175/JCLI-D-19-0993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P.-X., B. Wang, H. Cheng, J. Fasullo, Z. T. Guo, T. Kiefer, and Z. Y. Liu, 2014: The Global Monsoon across Time Scales: Is there coherent variability of regional monsoons? Climate Past, 10, 21632291, https://doi.org/10.5194/cpd-10-2163-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willetts, P. D., J. H. Marsham, C. E. Birch, D. J. Parker, S. Webster, and J. Petch, 2017: Moist convection and its upscale effects in simulations of the Indian monsoon with explicit and parametrized convection. Quart. J. Roy. Meteor. Soc., 143, 10731085, https://doi.org/10.1002/qj.2991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, J. S., R. Fu, J. R. Worden, S. Chakraborty, N. E. Clinton, C. Risi, Y. Sun, and L. Yin, 2017: Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA, 114, 84818486, https://doi.org/10.1073/pnas.1621516114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M., Y. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 17991819, https://doi.org/10.1175/JAMC-D-18-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., L. M. Russell, S. Lou, H. Liao, J. Guo, Y. Liu, B. Singh, and S. J. Ghan, 2017: Dust-wind interactions can intensify aerosol pollution over eastern China. Nat. Commun., 8, 15333, https://doi.org/10.1038/ncomms15333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn ., 41, 31273143, https://doi.org/10.1007/s00382-012-1582-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ying, J., P. Huang, T. Lian, and H. Tan, 2019: Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Climate Dyn ., 52, 18051818, https://doi.org/10.1007/s00382-018-4219-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., S. Wang, and Z.-Z. Hu, 2018: Do climate change and El Niño increase likelihood of Yangtze River extreme rainfall? [in “Explaining Extreme Events of 2016 from a Climate Perspective”] Bull. Amer. Meteor. Soc., 99 (1), S113S117, https://doi.org/10.1175/BAMS-D-17-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and T. Zhou, 2019: Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Climate, 32, 84658488, https://doi.org/10.1175/JCLI-D-18-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zou, L. Zhang, and X. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nat. Commun., 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., T. Zhou, L. Zhang, and L. Zou, 2019: Future intensification of the water cycle with an enhanced annual cycle over global land monsoon regions. J. Climate, 32, 54375452, https://doi.org/10.1175/JCLI-D-18-0628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. P. Li, and T. Liu, 2014: Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode. J. Meteor. Res., 28, 820835, https://doi.org/10.1007/s13351-014-4079-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L. M., and Coauthors, 2014: Widespread decline of Congo rainforest greenness in the past decade. Nature, 509, 8690, https://doi.org/10.1038/nature13265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., R. Yu, H. Li, and B. Wang, 2008: Ocean forcing to changes in global monsoon precipitation over the recent half-century. J. Climate, 21, 38333852, https://doi.org/10.1175/2008JCLI2067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009: Detecting and understanding the multi-decadal variability of the east Asian summer monsoon – Recent progress and state of affairs. Meteor. Z., 18, 455467, https://doi.org/10.1127/0941-2948/2009/0396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., J. Lu, and W. Zhang, 2020a: The sources of uncertainty in the projection of global land monsoon precipitation. Geophys. Res. Lett., 47, e2020GL088415, https://doi.org/10.1029/2020GL088415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., W. Zhang, L. Zhang, X. Zhang, Y. Qian, D. Peng, S. Ma, and B. Dong, 2020b: The dynamic and thermodynamic processes dominating the reduction of global land monsoon precipitation driven by anthropogenic aerosols emission. Sci. China Earth Sci., 63, 919933, https://doi.org/10.1007/s11430-019-9613-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, C. W., B. Wang, W. H. Qian, and B. Zhang, 2012: Recent weakening of northern east Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett., 39, L09701, https://doi.org/10.1029/2012GL051155.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 18 18 0
Full Text Views 1309 1309 497
PDF Downloads 1259 1259 555

Monsoons Climate Change Assessment

View More View Less
  • 1 Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • 3 School of Earth and Environmental Sciences, University of St Andrews, St. Andrews, and Department of Physics, University of Oxford, Oxford, United Kingdom
  • 4 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
  • 5 Department of Meteorology, Naval Postgraduate School, Monterey, California, and Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • 6 Department of Geological Sciences, The University of Texas at Austin, Austin, Texas
  • 7 Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • 8 Department of Physics, Federal University of Paraná, Curitiba, Brazil
  • 9 Center for Climate Physics, Institute for Basic Science and BK21, School of Earth and Environmental Systems, Pusan National University, Busan, South Korea
  • 10 Bureau of Meteorology, Melbourne, Australia
  • 11 Japan Meteorological Business Support Center, and Meteorological Research Institute, Tsukuba, Japan
  • 12 Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
  • 13 Institute for Basic Science, Center for Climate Physics, and Research Center for Climate Sciences, and Department of Climate System, Pusan National University, Busan, South Korea
  • 14 Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, and Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
  • 15 School of Geographic and Oceanographic Sciences, Nanjing Normal University, Nanjing, China
  • 16 Center for Climate Research Singapore, Singapore
  • 17 Department of Earth System Sciences, Stanford University, Stanford, California
  • 18 Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
  • 19 Department of Geography, University of Connecticut, Storrs, Connecticut
  • 20 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • 21 Department of Meteorology, and National Centre for Atmospheric Science, University of Reading, Reading, United Kingdom
  • 22 School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
  • 23 Institute for Basic Science, Center for Climate Physics, Busan, South Korea
  • 24 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.

Supplemental material: https://doi.org/DOI:10.1175/BAMS-D-19-0335.2

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chih-Pei Chang, cpchang@nps.edu

Abstract

Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.

Supplemental material: https://doi.org/DOI:10.1175/BAMS-D-19-0335.2

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Chih-Pei Chang, cpchang@nps.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.61 MB)
Save