Global Reach-Level 3-Hourly River Flood Reanalysis (1980–2019)

Yuan Yang Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Search for other papers by Yuan Yang in
Current site
Google Scholar
PubMed
Close
,
Ming Pan Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Ming Pan in
Current site
Google Scholar
PubMed
Close
,
Peirong Lin Institute of Remote Sensing and GIS, School of Earth and Space Sciences, Peking University, Beijing, China

Search for other papers by Peirong Lin in
Current site
Google Scholar
PubMed
Close
,
Hylke E. Beck Joint Research Centre, European Commission, Ispra, Italy

Search for other papers by Hylke E. Beck in
Current site
Google Scholar
PubMed
Close
,
Zhenzhong Zeng School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Search for other papers by Zhenzhong Zeng in
Current site
Google Scholar
PubMed
Close
,
Dai Yamazaki Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Dai Yamazaki in
Current site
Google Scholar
PubMed
Close
,
Cédric H. David Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Cédric H. David in
Current site
Google Scholar
PubMed
Close
,
Hui Lu Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China

Search for other papers by Hui Lu in
Current site
Google Scholar
PubMed
Close
,
Kun Yang Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China

Search for other papers by Kun Yang in
Current site
Google Scholar
PubMed
Close
,
Yang Hong School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yang Hong in
Current site
Google Scholar
PubMed
Close
, and
Eric F. Wood Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Pan, mpan@princeton.edu

Abstract

Better understanding and quantification of river floods for very local and “flashy” events calls for modeling capability at fine spatial and temporal scales. However, long-term discharge records with a global coverage suitable for extreme events analysis are still lacking. Here, grounded on recent breakthroughs in global runoff hydrology, river modeling, high-resolution hydrography, and climate reanalysis, we developed a 3-hourly river discharge record globally for 2.94 million river reaches during the 40-yr period of 1980–2019. The underlying modeling chain consists of the VIC land surface model (0.05°, 3-hourly) that is well calibrated and bias corrected and the RAPID routing model (2.94 million river and catchment vectors), with precipitation input from MSWEP and other meteorological fields downscaled from ERA5. Flood events (above 2-yr return) and their characteristics (number, spatial distribution, and seasonality) were extracted and studied. Validations against 3-hourly flow records from 6,000+ gauges in CONUS and daily records from 14,000+ gauges globally show good modeling performance across all flow ranges, good skills in reconstructing flood events (high extremes), and the benefit of (and need for) subdaily modeling. This data record, referred as Global Reach-Level Flood Reanalysis (GRFR), is publicly available at https://www.reachhydro.org/home/records/grfr.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Pan, mpan@princeton.edu
Save
  • Alfieri, L., P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappenberger, 2013: GloFAS – Global Ensemble Streamflow Forecasting and Flood Early Warning. Hydrol. Earth Syst. Sci., 17, 11611175, https://doi.org/10.5194/hess-17-1161-2013.

    • Search Google Scholar
    • Export Citation
  • Alfieri, L., V. Lorini, F. A. Hirpa, S. Harrigan, E. Zsoter, C. Prudhomme, and P. Salamon, 2020: A global streamflow reanalysis for 1980–2018. J. Hydrol. X, 6, 100049, https://doi.org/10.1016/j.hydroa.2019.100049.

    • Search Google Scholar
    • Export Citation
  • Allen, G. H., and T. M. Pavelsky, 2018: Global extent of rivers and streams. Science, 361, 585588, https://doi.org/10.1126/science.aat0636.

    • Search Google Scholar
    • Export Citation
  • Arheimer, B., R. Pimentel, K. Isberg, L. Crochemore, J. C. M. Andersson, A. Hasan, and L. Pineda, 2020: Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation. Hydrol. Earth Syst. Sci., 24, 535559, https://doi.org/10.5194/hess-24-535-2020.

    • Search Google Scholar
    • Export Citation
  • Bates, P. D., M. S. Horritt, and T. J. Fewtrell, 2010: A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol., 387, 3345, https://doi.org/10.1016/j.jhydrol.2010.03.027.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. de Roo, and A. I. J. M. van Dijk, 2015: Global maps of streamflow characteristics based on observations from several thousand catchments. J. Hydrometeor., 16, 14781501, https://doi.org/10.1175/JHM-D-14-0155.1.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. van Dijk, T. R. McVicar, and R. F. Adler, 2019a: MSWEP V2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473500, https://doi.org/10.1175/BAMS-D-17-0138.1.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., and Coauthors, 2019b: Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 23, 207224, https://doi.org/10.5194/hess-23-207-2019.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., M. Pan, P. Lin, J. Seibert, A. I. J. M. van Dijk, and E. F. Wood, 2020a: Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments. J. Geophys. Res. Atmos., 125, e2019JD031485, https://doi.org/10.1029/2019JD031485.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., E. F. Wood, T. R. McVicar, M. Zambrano-Bigiarini, C. Alvarez-Garreton, O. M. Baez-Villanueva, J. Sheffield, and D. N. Karger, 2020b: Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J. Climate, 33, 12991315, https://doi.org/10.1175/JCLI-D-19-0332.1.

    • Search Google Scholar
    • Export Citation
  • Beevers, L., L. Collet, G. Aitken, C. Maravat, and A. Visser, 2020: The influence of climate model uncertainty on fluvial flood hazard estimation. Nat. Hazards, 104, 24892510, https://doi.org/10.1007/s11069-020-04282-4.

    • Search Google Scholar
    • Export Citation
  • Beighley, R. E., and Coauthors, 2011: Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol. Processes, 25, 32163229, https://doi.org/10.1002/hyp.8045.

    • Search Google Scholar
    • Export Citation
  • Beighley, R., K. Eggert, T. Dunne, Y. He, V. Gummadi, and K. Verdin, 2009: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrol. Processes, 23, 12211235, https://doi.org/10.1002/hyp.7252.

    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan, 2016: Dominant flood generating mechanisms across the United States. Geophys. Res. Lett., 43, 43824390, https://doi.org/10.1002/2016GL068070.

    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., S. Harrigan, P. Molnar, L. J. Slater, and J. W. Kirchner, 2019: The relative importance of different flood-generating mechanisms across Europe. Water Resour. Res., 55, 45824593, https://doi.org/10.1029/2019WR024841.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 2011: Rainfall-Runoff Modelling: The Primer. John Wiley & Sons, 488 pp.

  • Biancamaria, S., D. P. Lettenmaier, and T. M. Pavelsky, 2016: The SWOT mission and its capabilities for land hydrology. Surv. Geophys., 37, 307337, https://doi.org/10.1007/s10712-015-9346-y.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., and Coauthors, 2017: Changing climate shifts timing of European floods. Science, 357, 588590, https://doi.org/10.1126/science.aan2506.

    • Search Google Scholar
    • Export Citation
  • Carpenter, T. M., J. A. Sperfslage, K. P. Georgakakos, T. Sweeney, and D. L. Fread, 1999: National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J. Hydrol., 224, 2144, https://doi.org/10.1016/S0022-1694(99)00115-8.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1988: Applied Hydrology. McGraw-Hill, 572 pp.

  • Collins, M. J., 2019: River flood seasonality in the Northeast United States: Characterization and trends. Hydrol. Processes, 33, 687698, https://doi.org/10.1002/hyp.13355.

    • Search Google Scholar
    • Export Citation
  • David, C. H., D. R. Maidment, G.-Y. Niu, Z.-L. Yang, F. Habets, and V. Eijkhout, 2011: River network routing on the NHDPlus Dataset. J. Hydrometeor., 12, 913934, https://doi.org/10.1175/2011JHM1345.1.

    • Search Google Scholar
    • Export Citation
  • David, C. H., J. S. Famiglietti, Z. L. Yang, F. Habets, and D. R. Maidment, 2016: A decade of RAPID—Reflections on the development of an open source geoscience code. Earth Space Sci., 3, 226244, https://doi.org/10.1002/2015EA000142.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., M. Balmaseda, G. Balsam, R. Engelen, A. J. Simmons, and J. N. Thepaut, 2014: Toward a consistent reanalysis of the climate system. Bull. Amer. Meteor. Soc., 95, 12351248, https://doi.org/10.1175/BAMS-D-13-00043.1.

    • Search Google Scholar
    • Export Citation
  • de Paiva, R. C. D., D. C. Buarque, W. Collischonn, M.-P. Bonnet, F. Frappart, S. Calmant, and C. A. Bulhões Mendes, 2013: Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour. Res., 49, 12261243, https://doi.org/10.1002/wrcr.20067.

    • Search Google Scholar
    • Export Citation
  • Dickinson, J. E., T. M. Harden, and G. J. McCabe, 2019: Seasonality of climatic drivers of flood variability in the conterminous United States. Sci. Rep., 9, 15321, https://doi.org/10.1038/s41598-019-51722-8.

    • Search Google Scholar
    • Export Citation
  • Duan, Q. Y., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, https://doi.org/10.1029/91WR02985.

    • Search Google Scholar
    • Export Citation
  • Durand, M., and Coauthors, 2016: An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res., 52, 45274549, https://doi.org/10.1002/2015WR018434.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., A. Boone, D. Yamazaki, B. Decharme, F. Papa, and N. Mognard, 2012: The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon Basin. J. Hydrometeor., 13, 16411665, https://doi.org/10.1175/JHM-D-12-021.1.

    • Search Google Scholar
    • Export Citation
  • Gleason, C. J., and L. C. Smith, 2014: Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proc. Natl. Acad. Sci. USA, 111, 47884791, https://doi.org/10.1073/pnas.1317606111.

    • Search Google Scholar
    • Export Citation
  • Gochis, D., W. Yu, and D. Yates, 2015: The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. Doc., 120 pp., http://www.ral.ucar.edu/projects/wrf_hydro/.

    • Search Google Scholar
    • Export Citation
  • GRDC, 2020: GRDC stations with monthly data. Global Runoff Data Centre, accessed 2 October 2020, https://www.bafg.de/GRDC/EN/Home/homepage_node.html.

  • Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, https://doi.org/10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Hall, J., and G. Blöschl, 2018: Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci., 22, 38833901, https://doi.org/10.5194/hess-22-3883-2018.

    • Search Google Scholar
    • Export Citation
  • Harrigan, S., and Coauthors, 2020: GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data, 12, 20432060, https://doi.org/10.5194/essd-12-2043-2020.

    • Search Google Scholar
    • Export Citation
  • He, X., M. Pan, Z. Wei, E. F. Wood, and J. Sheffield, 2020: A global drought and flood catalogue from 1950 to 2016. Bull. Amer. Meteor. Soc., 101, E508E535, https://doi.org/10.1175/BAMS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: Operational global reanalysis: Progress, future directions and synergies with NWP. ERA Rep. Series 27, ECMWF, 65 pp., https://doi.org/10.21957/tkic6g3wm.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., P. Salamon, H. E. Beck, V. Lorini, L. Alfieri, E. Zsoter, and S. J. Dadson, 2018: Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data. J. Hydrol., 566, 595606, https://doi.org/10.1016/j.jhydrol.2018.09.052.

    • Search Google Scholar
    • Export Citation
  • Huang, Z., H. Wu, R. F. Adler, G. Schumann, J. J. Gourley, A. Kettner, and N. Nanding, 2021: Multi-sourced flood inventories over the contiguous United States for actual and natural conditions. Bull. Amer. Meteor. Soc., 102, E1133E1149, https://doi.org/10.1175/BAMS-D-20-0001.1.

    • Search Google Scholar
    • Export Citation
  • Karnes, D., and G. R. Brakenridge, 1996: The Dartmouth Flood Observatory: An electronic research tool and archive for investigations of extreme flood events. Geosci. Inf. Soc. Proc., 27, 3136, https://hdl.handle.net/1969.1/156084.

    • Search Google Scholar
    • Export Citation
  • Kling, H., M. Fuchs, and M. Paulin, 2012: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol., 424–425, 264277, https://doi.org/10.1016/j.jhydrol.2012.01.011.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., and G. Grill, 2013: Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Processes, 27, 21712186, https://doi.org/10.1002/hyp.9740.

    • Search Google Scholar
    • Export Citation
  • Li, H., M. S. Wigmosta, H. Wu, M. Huang, Y. Ke, A. M. Coleman, and L. R. Leung, 2013: A physically based runoff routing model for land surface and earth system models. J. Hydrometeor., 14, 808828, https://doi.org/10.1175/JHM-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., L. R. Leung, A. Getirana, M. Huang, H. Wu, Y. Xu, J. Guo, and N. Voisin, 2015: Evaluating global streamflow simulations by a physically based routing model coupled with the community land model. J. Hydrometeor., 16, 948971, https://doi.org/10.1175/JHM-D-14-0079.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res., 99, 1441514428, https://doi.org/10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Liang, X., E. F. Wood, and D. P. Lettenmaier, 1996: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global Planet. Change, 13, 195206, https://doi.org/10.1016/0921-8181(95)00046-1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., L. J. Hopper Jr., Z.-L. Yang, M. Lenz, and J. W. Zeitler, 2018a: Insights into hydrometeorological factors constraining flood prediction skill during the May and October 2015 Texas Hill country flood events. J. Hydrometeor., 19, 13391361, https://doi.org/10.1175/JHM-D-18-0038.1.

    • Search Google Scholar
    • Export Citation
  • Lin, P., Z.-L. Yang, D. J. Gochis, W. Yu, D. R. Maidment, M. A. Somos-Valenzuela, and C. H. David, 2018b: Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation. Environ. Modell. Software, 107, 111, https://doi.org/10.1016/j.envsoft.2018.05.018.

    • Search Google Scholar
    • Export Citation
  • Lin, P., and Coauthors, 2019: Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res., 55, 64996516, https://doi.org/10.1029/2019WR025287.

    • Search Google Scholar
    • Export Citation
  • Lin, P., M. Pan, G. H. Allen, R. P. de Frasson, Z. Zeng, D. Yamazaki, and E. F. Wood, 2020: Global estimates of reach-level bankfull river width leveraging big data geospatial analysis. Geophys. Res. Lett., 47, e2019GL086405, https://doi.org/10.1029/2019GL086405.

    • Search Google Scholar
    • Export Citation
  • Lin, P., M. Pan, E. F. Wood, D. Yamazaki, and G. H. Allen, 2021: A new vector-based global river network dataset accounting for variable drainage density. Sci. Data, 8, 28, https://doi.org/10.1038/s41597-021-00819-9.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

    • Search Google Scholar
    • Export Citation
  • Linke, S., B. Lehner, C. O. Dallaire, J. Ariwi, and M. Thieme, 2019: Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data, 6, 283, https://doi.org/10.1038/s41597-019-0300-6.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., R. M. Parinussa, W. A. Dorigo, R. A. De Jeu, W. Wagner, A. I. J. M. van Dijk, M. F. McCabe, and J. Evans, 2011: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci., 15, 425436, https://doi.org/10.5194/hess-15-425-2011.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., E. Raschke, B. Nijssen, and D. P. Lettenmaier, 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141, https://doi.org/10.1080/02626669809492107.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., and Y. Fan, 2012: The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res., 117, D15113, https://doi.org/10.1029/2012JD017539.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., and Coauthors, 2016: MizuRoute version 1: A river network routing tool for a continental domain water resources applications. Geosci. Model Dev., 9, 22232238, https://doi.org/10.5194/gmd-9-2223-2016.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., M. P. Clark, A. J. Newman, A. W. Wood, E. D. Gutmann, B. Nijssen, O. Rakovec, and L. Samaniego, 2017: Towards seamless large-domain parameter estimation for hydrologic models. Water Resour. Res., 53, 80208040, https://doi.org/10.1002/2017WR020401.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., and S. Sorooshian, 2008: General review of rainfall-runoff modeling: Model calibration, data assimilation, and uncertainty analysis. Hydrological Modelling and the Water Cycle, S. Sorooshian et al., Eds., Water Science and Technology Library, Vol. 63., Springer, 124, https://doi.org/10.1007/978-3-540-77843-1_1.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann, and E. F. Wood, 2001: Predicting the discharge of global rivers. J. Climate, 14, 33073323, https://doi.org/10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Y. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact., 2, https://doi.org/10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olivera, F., Lear, M. S., Famiglietti, J. S., and Asante, K., 2002: Extracting low-resolution river networks from high-resolution digital elevation models. Water Resour. Res., 38, 1231, https://doi.org/10.1029/2001WR000726.

    • Search Google Scholar
    • Export Citation
  • O’Loughlin, F. E., J. Neal, G. J. P. Schumann, E. Beighley, and P. D. Bates, 2020: A LISFLOOD-FP hydraulic model of the middle reach of the Congo. J. Hydrol., 580, 124203, https://doi.org/10.1016/j.jhydrol.2019.124203.

    • Search Google Scholar
    • Export Citation
  • Oubeidillah, A. A., S. C. Kao, M. Ashfaq, B. S. Naz, and G. Tootle, 2014: A large-scale, high-resolution hydrological model parameter data set for climate change impact assessment for the conterminous US. Hydrol. Earth Syst. Sci., 18, 6784, https://doi.org/10.5194/hess-18-67-2014.

    • Search Google Scholar
    • Export Citation
  • Pan, M., and E. F. Wood, 2013: Inverse streamflow routing. Hydrol. Earth Syst. Sci., 17, 45774588, https://doi.org/10.5194/hess-17-4577-2013.

    • Search Google Scholar
    • Export Citation
  • Pan, M., E. F. Wood, D. B. McLaughlin, D. Entekhabi, and L. Luo, 2009: A multiscale ensemble filtering system for hydrologic data assimilation. Part I: Implementation and synthetic experiment. J. Hydrometeor., 10, 794806, https://doi.org/10.1175/2009JHM1088.1.

    • Search Google Scholar
    • Export Citation
  • Pan, M., X. Cai, N. W. Chaney, D. Entekhabi, and E. F. Wood, 2016: An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations. Geophys. Res. Lett., 43, 96629668, https://doi.org/10.1002/2016GL069964.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., S. Kohnová, R. Merz, J. Szolgay, K. Hlavčová, and G. Blöschl, 2009: Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria. Hydrol. Sci. J., 54, 456473, https://doi.org/10.1623/hysj.54.3.456.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance earth system modeling with NASA/GSFC’s Land Information System. Innovations Syst. Software Eng., 3, 157165, https://doi.org/10.1007/s11334-007-0028-x.

    • Search Google Scholar
    • Export Citation
  • Qiao, X., E. J. Nelson, D. P. Ames, Z. Li, and M. A. Matin, 2019: A systems approach to routing global gridded runoff through local high-resolution stream networks for flood early warning systems. Environ. Modell. Software, 120, 104501, https://doi.org/10.1016/j.envsoft.2019.104501.

    • Search Google Scholar
    • Export Citation
  • Reed, S., J. Schaake, and Z. Zhang, 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420, https://doi.org/10.1016/j.jhydrol.2007.02.015.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, https://doi.org/10.1029/2004GL020938.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Saharia, M., P.-E. Kirstetter, H. Vergara, J. J. Gourley, Y. Hong, and M. Giroud, 2017: Mapping flash flood severity in the United States. J. Hydrometeor., 18, 397411, https://doi.org/10.1175/JHM-D-16-0082.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, https://doi.org/10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Sutanudjaja, E. H., and Coauthors, 2018: PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geosci. Model Dev., 11, 24292453, https://doi.org/10.5194/gmd-11-2429-2018.

    • Search Google Scholar
    • Export Citation
  • Toth, E., 2016: Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions. Hydrol. Earth Syst. Sci., 20, 23832394, https://doi.org/10.5194/hess-20-2383-2016.

    • Search Google Scholar
    • Export Citation
  • UNISDR, 2015: The human cost of weather related disasters 1995-2005. UN Office for Disaster Risk Reduction, 30 pp., https://www.unisdr.org/2015/docs/climatechange/COP21_WeatherDisastersReport_2015_FINAL.pdf.

  • Villarini, G., 2016: On the seasonality of flooding across the continental United States. Adv. Water Resour., 87, 8091, https://doi.org/10.1016/j.advwatres.2015.11.009.

    • Search Google Scholar
    • Export Citation
  • Willner, S. N., C. Otto, and A. Levermann, 2018: Global economic response to river floods. Nat. Climate Change, 8, 594598, https://doi.org/10.1038/s41558-018-0173-2.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., D. P. Lettenmaier, and V. G. Zartarian, 1992: A land-surface hydrology parameterization with subgrid variability for general-circulation models. J. Geophys. Res., 97, 27172728, https://doi.org/10.1029/91JD01786.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090.

    • Search Google Scholar
    • Export Citation
  • Wu, H., J. S. Kimball, N. Mantua, and J. Stanford, 2011: Automated upscaling of river networks for macroscale hydrological modeling. Water Resour. Res., 47, W03517, https://doi.org/10.1029/2009WR008871.

    • Search Google Scholar
    • Export Citation
  • Wu, H., J. S. Kimball, H. Li, M. Huang, L. R. Leung, and R. F. Adler, 2012: A new global river network database for macroscale hydrologic modeling. Water Resour. Res., 48, W09701, https://doi.org/10.1029/2012WR012313.

    • Search Google Scholar
    • Export Citation
  • Wu, H., R. F. Adler, Y. Tian, G. J. Huffman, H. Li, and J. Wang, 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 26932717, https://doi.org/10.1002/2013WR014710.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., T. Oki, and S. Kanae, 2009: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci., 13, 22412251, https://doi.org/10.5194/hess-13-2241-2009.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., S. Kanae, H. Kim, and T. Oki, 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., G. A. M. D. Almeida, and P. D. Bates, 2013: Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res., 49, 72217235, https://doi.org/10.1002/wrcr.20552.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., and Coauthors, 2017: A high-accuracy map of global terrain elevations. Geophys. Res. Lett., 44, 58445853, https://doi.org/10.1002/2017GL072874.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., D. Ikeshima, J. Sosa, P. D. Bates, G. H. Allen, and T. M. Pavelsky, 2019: MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res., 55, 50535073, https://doi.org/10.1029/2019WR024873.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. Pan, H. E. Beck, C. K. Fisher, R. E. Beighley, S.-C. Kao, Y. Hong, and E. F. Wood, 2019: In quest of calibration density and consistency in hydrologic modeling: Distributed parameter calibration against streamflow characteristics. Water Resour. Res., 55, 77847803, https://doi.org/10.1029/2018WR024178.

    • Search Google Scholar
    • Export Citation
  • Ye, S., H.-Y. Li, L. R. Leung, J. Guo, Q. Ran, Y. Demissie, and M. Sivapalan, 2017: Understanding flood seasonality and its temporal shifts within the contiguous United States. J. Hydrometeor., 18, 19972009, https://doi.org/10.1175/JHM-D-16-0207.1.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., R. F. Adler, Y. Tian, Y. Hong, and H. F. Pierce, 2010: Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens., 31, 37633782, https://doi.org/10.1080/01431161.2010.483489.

    • Search Google Scholar
    • Export Citation
  • Zajac, Z., B. Revilla-Romero, P. Salamon, P. Burek, F. A. Hirpa, and H. Beck, 2017: The impact of lake and reservoir parameterization on global streamflow simulation. J. Hydrol., 548, 552568, https://doi.org/10.1016/j.jhydrol.2017.03.022.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 0 0
Full Text Views 7651 2306 167
PDF Downloads 6702 1572 129