Aerosol Properties in Cloudy Environments from Remote Sensing Observations: A Review of the Current State of Knowledge

A. Marshak NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by A. Marshak in
Current site
Google Scholar
PubMed
Close
,
A. Ackerman NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by A. Ackerman in
Current site
Google Scholar
PubMed
Close
,
A. M. da Silva NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by A. M. da Silva in
Current site
Google Scholar
PubMed
Close
,
T. Eck NASA Goddard Space Flight Center, and Universities Space Research Association, Greenbelt, Maryland

Search for other papers by T. Eck in
Current site
Google Scholar
PubMed
Close
,
B. Holben NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by B. Holben in
Current site
Google Scholar
PubMed
Close
,
R. Kahn NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by R. Kahn in
Current site
Google Scholar
PubMed
Close
,
R. Kleidman NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Lanham, Maryland

Search for other papers by R. Kleidman in
Current site
Google Scholar
PubMed
Close
,
K. Knobelspiesse NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by K. Knobelspiesse in
Current site
Google Scholar
PubMed
Close
,
R. Levy NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by R. Levy in
Current site
Google Scholar
PubMed
Close
,
A. Lyapustin NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by A. Lyapustin in
Current site
Google Scholar
PubMed
Close
,
L. Oreopoulos NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by L. Oreopoulos in
Current site
Google Scholar
PubMed
Close
,
L. Remer NASA Goddard Space Flight Center, Greenbelt, and Joint Center for Earth System Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by L. Remer in
Current site
Google Scholar
PubMed
Close
,
O. Torres NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by O. Torres in
Current site
Google Scholar
PubMed
Close
,
T. Várnai NASA Goddard Space Flight Center, Greenbelt, and Joint Center for Earth System Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by T. Várnai in
Current site
Google Scholar
PubMed
Close
,
G. Wen NASA Goddard Space Flight Center, Greenbelt, and GESTAR/Morgan State University, Baltimore, Maryland

Search for other papers by G. Wen in
Current site
Google Scholar
PubMed
Close
, and
J. Yorks NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by J. Yorks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Aerosol properties are fundamentally different near clouds than away from clouds. This paper reviews the current state of knowledge of aerosol properties in the near-low-cloud environment and quantitatively compares them with aerosols far from clouds, according to remote sensing observations. It interprets observations of aerosol properties from different sensors using satellite, aircraft, and ground-based observations. The correlation (and anticorrelation) between proximity to cloud and aerosol properties is discussed. Retrieval artifacts in the near-cloud environment are demonstrated and quantified for different sensor attributes and environmental conditions. Finally, the paper describes the possible corrections for near-cloud enhancement in remote sensing retrievals. This study is timely in view of science definition studies for NASA’s Aerosol, Cloud, Convection and Precipitation (ACCP) mission, which will also seek to directly link aerosol properties to nearby clouds.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Marshak, alexander.marshak@nasa.gov

Abstract

Aerosol properties are fundamentally different near clouds than away from clouds. This paper reviews the current state of knowledge of aerosol properties in the near-low-cloud environment and quantitatively compares them with aerosols far from clouds, according to remote sensing observations. It interprets observations of aerosol properties from different sensors using satellite, aircraft, and ground-based observations. The correlation (and anticorrelation) between proximity to cloud and aerosol properties is discussed. Retrieval artifacts in the near-cloud environment are demonstrated and quantified for different sensor attributes and environmental conditions. Finally, the paper describes the possible corrections for near-cloud enhancement in remote sensing retrievals. This study is timely in view of science definition studies for NASA’s Aerosol, Cloud, Convection and Precipitation (ACCP) mission, which will also seek to directly link aerosol properties to nearby clouds.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. Marshak, alexander.marshak@nasa.gov
Save
  • Arola, A., T. F. Eck, H. Kokkola, M. R. A. Pitkänen, and S. Romakkaniemi, 2017: Assessment of cloud-related fine-mode AOD enhancements based on AERONET SDA product. Atmos. Chem. Phys., 17, 59916001, https://doi.org/10.5194/acp-17-5991-2017.

    • Search Google Scholar
    • Export Citation
  • Bar-Or, R. Z., I. Koren, and O. Altaratz, 2010: Estimating cloud field coverage using morphological analysis. Environ. Res. Lett., 5, 014022, https://doi.org/10.1088/1748-9326/5/1/014022.

    • Search Google Scholar
    • Export Citation
  • Chand, D., and Coauthors, 2012: Aerosol optical depth increase in partly cloudy conditions. J. Geophys. Res., 117, D17207, https://doi.org/10.1029/2012JD017894.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., A. S. Ackerman, F. A.-M. Bender, T. L. Anderson, and Z. Liu, 2007: On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus, 59B, 715727, https://doi.org/10.1111/j.1600-0889.2007.00297.x.

    • Search Google Scholar
    • Export Citation
  • Cornet, C., L. C-Labonnote, and F. Szczap, 2010: Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud. J. Quant. Spectrosc. Radiat. Transfer, 111, 174186, https://doi.org/10.1016/j.jqsrt.2009.06.013.

    • Search Google Scholar
    • Export Citation
  • Dall’Osto, M., R. M. Harrison, H. Coe, and P. Williams, 2009: Real-time secondary aerosol formation during a fog event in London. Atmos. Chem. Phys., 9, 24592469, https://doi.org/10.5194/acp-9-2459-2009.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for the retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105, 2067320696,https://doi.org/10.1029/2000JD900282.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and Coauthors, 2006: The application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, https://doi.org/10.1029/2005JD006619.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2012: Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). J. Geophys. Res., 117, D07206, https://doi.org/10.1029/2011JD016839.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2014: Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds. Atmos. Chem. Phys., 14, 1163311656,https://doi.org/10.5194/acp-14-11633-2014.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2018: Observations of the interaction and transport of fine mode aerosols with cloud and/ or fog in Northeast Asia from Aerosol Robotic Network and satellite remote sensing. J. Geophys. Res. Atmos., 123, 55605587, https://doi.org/10.1029/2018JD028313.

    • Search Google Scholar
    • Export Citation
  • Eck, T. F., and Coauthors, 2020: Influence of cloud, fog, and high relative humidity during pollution transport events in South Korea: Aerosol properties and PM2.5 variability. Atmos. Environ., 232, 117530, https://doi.org/10.1016/j.atmosenv.2020.117530.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and B. Morley, 2003: Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements. J. Geophys. Res., 108, 4327, https://doi.org/10.1029/2002JD002842.

    • Search Google Scholar
    • Export Citation
  • Flower, V. J. B., and R. A. Kahn, 2020: The evolution of Iceland volcano emissions, as observed from space in the era of NASA’s Earth Observing System (EOS). J. Geophys. Res. Atmos., 125, e2019JD031625, https://doi.org/10.1029/2019JD031625.

    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., P. Stier, and B. S. Grandey, 2014a: Cloud fraction mediates the aerosol optical depth-cloud top height relationship. Geophys. Res. Lett., 41, 36223627, https://doi.org/10.1002/2014GL059524.

    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., P. Stier, and D. G. Partridge, 2014b: Satellite observations of cloud regime development: The role of aerosol processes. Atmos. Chem. Phys., 14, 11411158, https://doi.org/10.5194/acp-14-1141-2014.

    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., J. Quaas, and N. Bellouin, 2016: Constraining the aerosol influence on cloud fraction. J. Geophys. Res. Atmos., 121, 35663583, https://doi.org/10.1002/2015JD023744.

    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., 2010: Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties. Atmos. Meas. Tech., 3, 839851, https://doi.org/10.5194/amt-3-839-2010.

    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., and J. Landgraf, 2005: Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study. J. Geophys. Res., 110, D20207, https://doi.org/10.1029/2005JD006212.

    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., P. Litvinov, and A. Butz, 2011: Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements. J. Geophys. Res., 116, D14204, https://doi.org/10.1029/2010JD015469.

    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., and Coauthors, 2019a: Aerosol measurements by SPEXone on the NASA PACE mission: Expected retrieval capabilities. J. Quant. Spectrosc. Radiat. Transfer, 227, 170184, https://doi.org/10.1016/j.jqsrt.2019.02.006.

    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., E. Gryspeerdt, and J. Quaas, 2019b: Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions. Nat. Commun., 10, 5405, https://doi.org/10.1038/s41467-019-13372-2.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Jethva, H., O. Torres, L. A. Remer, and P. K. Bhartia, 2013: A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: Application to MODIS measurements. IEEE Trans. Geosci. Remote Sens., 99, 19, https://doi.org/10.1109/TGRS.2012.2230008.

    • Search Google Scholar
    • Export Citation
  • Jethva, H., O. Torres, F. Waquet, D. Chand, and Y. Hu, 2014: How do A-train sensors intercompare in the retrieval of above-cloud aerosol optical depth? A case study-based assessment. Geophys. Res. Lett., 41, 186192, https://doi.org/10.1002/2013GL058405.

    • Search Google Scholar
    • Export Citation
  • Kahn, R. A., and B. J. Gaitley, 2015: An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res., 120, 42484281, https://doi.org/10.1002/2015JD023322.

    • Search Google Scholar
    • Export Citation
  • Kassianov, E., 2003: Stochastic radiative transfer in multilayer broken clouds. Part I: Markovian approach. J. Quant. Spectrosc. Radiat. Transfer, 77, 373394, https://doi.org/10.1016/S0022-4073(02)00170-X.

    • Search Google Scholar
    • Export Citation
  • Knobelspiesse, K., B. Cairns, J. Redemann, R. W. Bergstrom, and A. Stohl, 2011: Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign. Atmos. Chem. Phys., 11, 62456263, https://doi.org/10.5194/acp-11-6245-2011.

    • Search Google Scholar
    • Export Citation
  • Knobelspiesse, K., and Coauthors, 2012: Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs. Opt. Express, 20, 2145721484,https://doi.org/10.1364/OE.20.021457.

    • Search Google Scholar
    • Export Citation
  • Knobelspiesse, K., B. Cairns, H. Jethva, M. Kacenelenbogen, M. Segal-Rosenheimer, and O. Torres, 2015: Remote sensing of above cloud aerosols. Light Scattering Reviews 9, A. A. Kokhanovsky, Ed., Springer, 167210.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, https://doi.org/10.1029/2007GL029253.

    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Feingold, H. Jiang, and O. Altaratz, 2009: Aerosol effects on the inter-cloud region of a small cumulus cloud field. Geophys. Res. Lett., 36, L14805, https://doi.org/10.1029/2009GL037424.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T. F. Eck, 2010: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys., 10, 1039910420,https://doi.org/10.5194/acp-10-10399-2010.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Coauthors, 2014: Observations of residual submicron fine aerosol particles related to cloud and fog processing during a major pollution event in Beijing. Atmos. Environ., 86, 187192, https://doi.org/10.1016/j.atmosenv.2013.12.044.

    • Search Google Scholar
    • Export Citation
  • Li, Z., W. Hou, J. Hong, F. Zheng, D. Luo, J. Wang, X. Gu, and Y. Qiao, 2018: Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transfer, 218, 2137, https://doi.org/10.1016/j.jqsrt.2018.07.003.

    • Search Google Scholar
    • Export Citation
  • Limbacher, J. A., and R. A. Kahn, 2019: Updated MISR dark water research aerosol retrieval algorithm—Part 2: Aerosol and surface-reflectance retrievals over shallow, turbid, and eutrophic water. Atmos. Meas. Tech., 12, 675689, https://doi.org/10.5194/amt-12-675-2019.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and N. Manalo-Smith, 2005: Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Climate, 18, 35063526, https://doi.org/10.1175/JCLI3504.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and G. L. Schuster, 2008: An observational study of the relationship between cloud, aerosol and meteorology in broken low-level cloud conditions. J. Geophys. Res., 113, D14214, https://doi.org/10.1029/2007JD009763.

    • Search Google Scholar
    • Export Citation
  • Lyapustin, A., Y. Wang, S. Korkin, and D. Huang, 2018: MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech., 11, 57415765, https://doi.org/10.5194/amt-11-5741-2018.

    • Search Google Scholar
    • Export Citation
  • Ma, T., and Coauthors, 2020: Contribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China Plain. Atmos. Chem. Phys., 20, 58875897, https://doi.org/10.5194/acp-20-5887-2020.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., G. Wen, J. A. Coakley, L. A. Remer, N. G. Loeb, and R. F. Cahalan, 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res., 113, D14S17, https://doi.org/10.1029/2007JD009196.

    • Search Google Scholar
    • Export Citation
  • Martins, V. S., A. Lyapustin, Y. Wang, D. M. Giles, A. Smirnov, I. Slutsker, and S. Korkin, 2019: Global validation of columnar water vapor derived from EOS MODIS-MAIAC algorithm against the ground-based AERONET observations. Atmos. Res., 225, 181192, https://doi.org/10.1016/j.atmosres.2019.04.005.

    • Search Google Scholar
    • Export Citation
  • Meister, G., and C. R. McClain, 2010: Point-spread function of the ocean color bands of the moderate resolution imaging spectroradiometer on Aqua. Appl. Opt., 49, 62766285, https://doi.org/10.1364/AO.49.006276.

    • Search Google Scholar
    • Export Citation
  • Meyer, K., S. Platnick, and Z. Zhang, 2015: Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS. J. Geophys. Res. Atmos., 120, 55245547, https://doi.org/10.1002/2015JD023128.

    • Search Google Scholar
    • Export Citation
  • Miller, D. J., M. Segal-Rozenhaimer, K. Knobelspiesse, J. Redemann, B. Cairns, M. Alexandrov, B. van Diedenhoven, and A. Wasilewski, 2020: Low-level liquid cloud properties during ORACLES retrieved using airborne polarimetric measurements and a neural network algorithm. Atmos. Meas. Tech., 13, 34473470, https://doi.org/10.5194/amt-13-3447-2020.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. Vanderlei Martins, and E. P. Shettle, 2004: Monitoring of aerosol forcing of climate from space: Analysis of measurement requirements. J. Quant. Spectrosc. Radiat. Transfer, 88, 149161, https://doi.org/10.1016/j.jqsrt.2004.03.030.

    • Search Google Scholar
    • Export Citation
  • Moch, J. M., and Coauthors, 2018: Contribution of hydroxymethane sulfonate to ambient particulate matter: A potential explanation for high particulate sulfur during severe winter haze in Beijing. Geophys. Res. Lett., 45, 1196911979,https://doi.org/10.1029/2018GL079309.

    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, Engineering, and Medicine, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 716 pp., https://doi.org/10.17226/24938.

    • Search Google Scholar
    • Export Citation
  • Nelson, D. L., M. J. Garay, R. A. Kahn, and B. A. Dunst, 2013: Stereoscopic height and wind retrievals for aerosol plumes with the MISR INteractive eXplorer (MINX). Remote Sens., 5, 45934628, https://doi.org/10.3390/rs5094593.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2017: Using MODIS cloud regimes to sort diagnostic signals of aerosol-cloud-precipitation interactions. J. Geophys. Res. Atmos., 122, 54165440, https://doi.org/10.1002/2016JD026120.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., N. Cho, and D. Lee, 2020: A global survey of apparent aerosol-cloud interaction signals. J. Geophys. Res. Atmos., 125, e2019JD031287, https://doi.org/10.1029/2019JD031287.

    • Search Google Scholar
    • Export Citation
  • Parol, F., and Coauthors, 2004: Review of capabilities of multi-angle and polarization cloud measurements from POLDER. Adv. Space Res., 33, 10801088, https://doi.org/10.1016/S0273-1177(03)00734-8.

    • Search Google Scholar
    • Export Citation
  • Peers, F., and Coauthors, 2015: Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect. Atmos. Chem. Phys., 15, 41794196, https://doi.org/10.5194/acp-15-4179-2015.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., B. Stevens, P. Stier, and U. Lohmann, 2010: Interpreting the cloud cover—Aerosol optical depth relationship found in satellite data using a general circulation model. Atmos. Chem. Phys., 10, 61296135, https://doi.org/10.5194/acp-10-6129-2010.

    • Search Google Scholar
    • Export Citation
  • Redemann, J., Q. Zhang, P. B. Russell, J. M. Livingston, and L. A. Remer, 2009: Case studies of aerosol remote sensing in the vicinity of clouds. J. Geophys. Res., 114, D06209, https://doi.org/10.1029/2008JD010774.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, https://doi.org/10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2019: Retrieving aerosol characteristics from the PACE mission, Part 2: Multi-angle and polarimetry. Front. Environ. Sci., 7, 94, https://doi.org/10.3389/fenvs.2019.00094.

    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., N. C. Hsu, C. Bettenhausen, J. Lee, J. Redemann, B. Schmid, and Y. Shinozuka, 2016: Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. J. Geophys. Res. Atmos., 121, 48304854, https://doi.org/10.1002/2015JD024729.

    • Search Google Scholar
    • Export Citation
  • Segal-Rozenhaimer, M., D. J. Miller, K. Knobelspiesse, J. Redemann, B. Cairns, and M. D. Alexandrov, 2018: Development of neural network retrievals of liquid cloud properties from multi-angle polarimetric observations. J. Quant. Spectrosc. Radiat. Transfer, 220, 3951, https://doi.org/10.1016/j.jqsrt.2018.08.030.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. S., and Coauthors, 2019: Exploring aerosols near clouds with high-spatial-resolution aircraft remote sensing during SEAC4RS. J. Geophys. Res. Atmos., 124, 21482173, https://doi.org/10.1029/2018JD028989.

    • Search Google Scholar
    • Export Citation
  • Stap, F., O. Hasekamp, and T. Roeckmann, 2015: Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination. Atmos. Meas. Tech., 8, 12871301, https://doi.org/10.5194/amt-8-1287-2015.

    • Search Google Scholar
    • Export Citation
  • Stap, F., O. Hasekamp, C. Emde, and T. Röckmann, 2016: Multiangle photopolarimetric aerosol retrievals in the vicinity of clouds: Synthetic study based on a large eddy simulation. J. Geophys. Res. Atmos., 121, 1291412935,https://doi.org/10.1002/2016JD024787.

    • Search Google Scholar
    • Export Citation
  • Su, W., G. L. Schuster, N. G. Loeb, R. R. Rogers, R. A. Ferrare, C. A. Hostetler, J. W. Hair, and M. D. Obland, 2008: Aerosol and cloud interaction observed from high spectral resolution lidar data. J. Geophys. Res., 113, D24202, https://doi.org/10.1029/2008JD010588.

    • Search Google Scholar
    • Export Citation
  • Tackett, J. L., and L. Di Girolamo, 2009: Enhanced aerosol backscatter adjacent to tropical trade wind clouds revealed by satellite-based lidar. Geophys. Res. Lett., 36, L14804, https://doi.org/10.1029/2009GL039264.

    • Search Google Scholar
    • Export Citation
  • Tanré, D., and Coauthors, 2011: Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos. Meas. Tech., 4, 13831395, https://doi.org/10.5194/amt-4-1383-2011.

    • Search Google Scholar
    • Export Citation
  • Titov, G. A., 1990: Statistical description of radiation transfer in clouds. J. Atmos. Sci., 47, 2438, https://doi.org/10.1175/1520-0469(1990)047<0024:SDORTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Twohy, C.H., J. A. Coakley Jr., and W. R. Tahnk, 2009: Effect of changes in relative humidity on aerosol scattering near clouds. J. Geophys. Res., 114, D05205, https://doi.org/10.1029/2008JD010991.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2009: MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett., 36, L06807, https://doi.org/10.1029/2008GL037089.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2011: Global CALIPSO observations of aerosol changes near clouds. IEEE Geosci. Remote Sens. Lett., 8, 1923, https://doi.org/10.1109/LGRS.2010.2049982.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2012: Analysis of co-located MODIS and CALIPSO observations near clouds. Atmos. Meas. Tech., 5, 389396, https://doi.org/10.5194/amt-5-389-2012.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., and A. Marshak, 2018: Satellite observations of cloud-related variations in aerosol properties. Atmosphere, 9, 430, https://doi.org/10.3390/atmos9110430.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., A. Marshak, and W. Yang, 2013: Multi-satellite aerosol observations in the vicinity of clouds. Atmos. Chem. Phys., 13, 38993908, https://doi.org/10.5194/acp-13-3899-2013.

    • Search Google Scholar
    • Export Citation
  • Várnai, T., A. Marshak, and T. F. Eck, 2017: Observation-based study on aerosol optical depth and particle size in partly cloudy regions. J. Geophys. Res. Atmos., 122, 102013–102024, https://doi.org/10.1002/2017JD027028.

    • Search Google Scholar
    • Export Citation
  • Waquet, F., J. Riedi, L. Labonnote, P. Goloub, B. Cairns, J. L. Deuzé, and D. Tanré, 2009: Aerosol remote sensing over clouds using A-Train observations. J. Atmos. Sci., 66, 24682480, https://doi.org/10.1175/2009JAS3026.1.

    • Search Google Scholar
    • Export Citation
  • Waquet, F., and Coauthors, 2013: Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements. Atmos. Meas. Tech., 6, 9911016, https://doi.org/10.5194/amt-6-991-2013.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, R. F. Cahalan, L. Remer, and R. G. Kleidman, 2007: 3D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res., 112, D13204, https://doi.org/10.1029/2006JD008267.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, and R. F. Cahalan, 2008: Importance of molecular Rayleigh scattering in the enhancement of clear sky radiance in the vicinity of boundary layer cumulus clouds. J. Geophys. Res., 113, D24207, https://doi.org/10.1029/2008JD010592.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, L. Remer, R. Levy, N. Loeb, T. Várnai, and R. Cahalan, 2013: Correction of MODIS aerosol retrieval for 3D radiative effects in broken cloud fields. AIP Conf. Proc., 1531, 280, https://doi.org/10.1063/1.4804761.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, T. Várnai, and R. C. Levy, 2016: Testing the two-layer model for correcting near cloud reflectance enhancement using LES/SHDOM simulated radiances. J. Geophys. Res. Atmos., 121, 96619674, https://doi.org/10.1002/2016JD025021.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2007: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Xu, F., and Coauthors, 2018: Coupled retrieval of liquid water cloud and above-Cloud aerosol properties using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). J. Geophys. Res. Atmos., 123, 31753204, https://doi.org/10.1002/2017JD027926.

    • Search Google Scholar
    • Export Citation
  • Yang, W., A. Marshak, T. Várnai, O. V. Kalashnikova, and A. B. Kostinski, 2012: CALIPSO observations of transatlantic dust properties: vertical stratification and effect of clouds. Atmos. Chem. Phys., 12, 1133911354,https://doi.org/10.5194/acp-12-11339-2012.

    • Search Google Scholar
    • Export Citation
  • Yu, H., and Z. Zhang, 2013: New directions: Emerging satellite observations of above-cloud aerosols and direct radiative forcing. Atmos. Environ., 72, 3640, https://doi.org/10.1016/j.atmosenv.2013.02.017.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. S. Reid, and B. N. Holben, 2005: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. Geophys. Res. Lett., 32, L15803, https://doi.org/10.1029/2005GL023254.

    • Search Google Scholar
    • Export Citation
  • Zhuravleva, T., and A. Marshak, 2005: On the validation of the Poisson model of broken clouds. Izv., Atmos. Ocean. Phys., 41, 713725.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 12 0 0
Full Text Views 2874 677 47
PDF Downloads 2640 360 28