The Experimental Warning Program of NOAA’s Hazardous Weather Testbed

Kristin M. Calhoun NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma;

Search for other papers by Kristin M. Calhoun in
Current site
Google Scholar
PubMed
Close
,
Kodi L. Berry NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma;

Search for other papers by Kodi L. Berry in
Current site
Google Scholar
PubMed
Close
,
Darrel M. Kingfield NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma;

Search for other papers by Darrel M. Kingfield in
Current site
Google Scholar
PubMed
Close
,
Tiffany Meyer NOAA/Global Systems Laboratory, Boulder, Colorado;

Search for other papers by Tiffany Meyer in
Current site
Google Scholar
PubMed
Close
,
Makenzie J. Krocak UCAR/Unidata, Boulder, Colorado;

Search for other papers by Makenzie J. Krocak in
Current site
Google Scholar
PubMed
Close
,
Travis M. Smith

Search for other papers by Travis M. Smith in
Current site
Google Scholar
PubMed
Close
,
Greg Stumpf Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma;

Search for other papers by Greg Stumpf in
Current site
Google Scholar
PubMed
Close
, and
Alan Gerard Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, and NOAA/NWS/Meteorological Development Laboratory, Silver Spring, Maryland

Search for other papers by Alan Gerard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

NOAA’s Hazardous Weather Testbed (HWT) is a physical space and research framework to foster collaboration and evaluate emerging tools, technology, and products for NWS operations. The HWT’s Experimental Warning Program (EWP) focuses on research, technology, and communication that may improve severe and hazardous weather warnings and societal response. The EWP was established with three fundamental hypotheses: 1) collaboration with operational meteorologists increases the speed of the transition process and rate of adoption of beneficial applications and technology, 2) the transition of knowledge between research and operations benefits both the research and operational communities, and 3) including end users in experiments generates outcomes that are more reliable and useful for society. The EWP is designed to mimic the operations of any NWS Forecast Office, providing the opportunity for experiments to leverage live and archived severe weather activity anywhere in the United States. During the first decade of activity in the EWP, 15 experiments covered topics including new radar and satellite applications, storm-scale numerical models and data assimilation, total lightning use in severe weather forecasting, and multiple social science and end-user topics. The experiments range from exploratory and conceptual research to more controlled experimental design to establish statistical patterns and causal relationships. The EWP brought more than 400 NWS forecasters, 60 emergency managers, and 30 broadcast meteorologists to the HWT to participate in live demonstrations, archive events, and data-denial experiments influencing today’s operational warning environment and shaping the future of warning research, technology, and communication for years to come.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristin Calhoun, kristin.calhoun@noaa.gov

Abstract

NOAA’s Hazardous Weather Testbed (HWT) is a physical space and research framework to foster collaboration and evaluate emerging tools, technology, and products for NWS operations. The HWT’s Experimental Warning Program (EWP) focuses on research, technology, and communication that may improve severe and hazardous weather warnings and societal response. The EWP was established with three fundamental hypotheses: 1) collaboration with operational meteorologists increases the speed of the transition process and rate of adoption of beneficial applications and technology, 2) the transition of knowledge between research and operations benefits both the research and operational communities, and 3) including end users in experiments generates outcomes that are more reliable and useful for society. The EWP is designed to mimic the operations of any NWS Forecast Office, providing the opportunity for experiments to leverage live and archived severe weather activity anywhere in the United States. During the first decade of activity in the EWP, 15 experiments covered topics including new radar and satellite applications, storm-scale numerical models and data assimilation, total lightning use in severe weather forecasting, and multiple social science and end-user topics. The experiments range from exploratory and conceptual research to more controlled experimental design to establish statistical patterns and causal relationships. The EWP brought more than 400 NWS forecasters, 60 emergency managers, and 30 broadcast meteorologists to the HWT to participate in live demonstrations, archive events, and data-denial experiments influencing today’s operational warning environment and shaping the future of warning research, technology, and communication for years to come.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kristin Calhoun, kristin.calhoun@noaa.gov
Save
  • Argyle, E. M. , J. J. Gourley , Z. L. Flamig , T. Hansen , and K. Manross , 2017: Towards a user- centered design of a weather forecasting decision support tool. Bull. Amer. Meteor. Soc., 98, 373382, https://doi.org/10.1175/BAMS-D-16-0031.1.

    • Search Google Scholar
    • Export Citation
  • Barthold, F. E. , T. E. Workoff , B. A. Cosgrove , J. J. Gourley , D. R. Novak , and K. M. Mahoney , 2015: Improving flash flood forecasts: The HMT-WPC flash flood and intense rainfall experiment. Bull. Amer. Meteor. Soc., 96, 18591866, https://doi.org/10.1175/BAMS-D-14-00201.1.

    • Search Google Scholar
    • Export Citation
  • Bass, E. J. , and Coauthors , 2011: A method for investigating real-time distributed weather forecaster-emergency manager interaction. 2011 IEEE Int. Conf. on Systems, Man, and Cybernetics, Anchorage, AK, IEEE, 28092815, https://doi.org/10.1109/ICSMC.2011.6084098.

    • Search Google Scholar
    • Export Citation
  • Bates, A. V. , and Coauthors , 2019: Preparing for FACETs: The need for inclusive National Weather Service forecaster training and innovative collaboration tools. 9th Conf. on Transition of Research to Operations, Phoenix, AZ, Amer. Meteor. Soc., 13A.5, https://ams.confex.com/ams/2019Annual/webprogram/Paper349804.html.

  • Bedka, K. , J. Brunner , R. Dworak , W. Feltz , J. Otkin , and T. Greenwald , 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, https://doi.org/10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bikos, D. , and Coauthors , 2012: Synthetic satellite imagery for real-time high-resolution model evaluation. Wea. Forecasting, 27, 784795, https://doi.org/10.1175/WAF-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G. , K. T. Halbert , T. A. Supinie , P. M. Marsh , R. L. Thompson , and J. A. Hart , 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Search Google Scholar
    • Export Citation
  • Bowden, K. A. , and P. L. Heinselman , 2016: A qualitative analysis of NWS forecasters’ use of phased-array radar data during severe hail and wind events. Wea. Forecasting, 31, 4355, https://doi.org/10.1175/WAF-D-15-0089.1.

    • Search Google Scholar
    • Export Citation
  • Bowden, K. A. , P. Heinselman , D. M. Kingfield , and R. Thomas , 2015: Impacts of phased array radar data on forecaster performance during severe hail and wind events. Wea. Forecasting, 30, 389404, https://doi.org/10.1175/WAF-D-14-00101.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. , K. Hondl , B. Philips , L. Lemon , E. J. Bass , D. Rude , and D. L. Andra Jr., 2010: Evaluation of distributed collaborative adaptive sensing for detection of low-level circulations and implications for severe weather warning operations. Wea. Forecasting, 25, 173189, https://doi.org/10.1175/2009WAF2222233.1.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C. , and Coauthors, 2019: Meteorological imagery for the geostationary lightning mapper. J. Geophys. Res. Atmos., 124, 14  28514 309, https://doi.org/10.1029/2019JD030874.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M. , 2015: Forecaster use of total lightning data for short-term forecasts and warnings in the Hazardous Weather Testbed. Seventh Conf. on Meteorological Applications of Lightning Data, Phoenix, AZ, Amer. Meteor. Soc., 3.5, https://ams.confex.com/ams/95Annual/webprogram/Paper268336.html].

  • Calhoun, K. M. , 2018: Feedback and recommendations for the Geostationary Lightning Mapper (GLM) in severe and hazardous weather forecasting and warning operations. NOAA Rep., 15 pp., https://hwt.nssl.noaa.gov/ewp/projects/GLM-HWT-report_2018.pdf.

  • Calhoun, K. M. , 2019: Feedback and recommendations for the Geostationary Lightning Mapper (GLM) in severe and hazardous weather forecasting and warning operations. NOAA Rep., 16 pp., https://hwt.nssl.noaa.gov/ewp/projects/GLM-HWT-report-2019.pdf.

  • Calhoun, K. M. , T. M. Smith , D. M. Kingfield , J. Gao , and D. J. Stensrud , 2014: Forecaster use and evaluation of real-time 3DVAR analyses during severe thunderstorm and tornado warning operations in the Hazardous Weather Testbed. Wea. Forecasting, 29, 601613, https://doi.org/10.1175/WAF-D-13-00107.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M. , D. M. Kingfield , T. Meyer , W. Roberts , J. Ramer , B. Motta , and L. Rothfusz , 2016: Earth networks total lightning data and dangerous thunderstorm alerts evaluation in the NOAA hazardous weather testbed. NOAA Doc., 33 pp., http://hwt.nssl.noaa.gov/ewp/ENI_HWT_Finalreport_Mar2016.pdf.

  • Chronis, T. , and Coauthors, 2014: National demonstration and evaluation of a real time lightning jump algorithm for operational use. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., 4B.1, https://ams.confex.com/ams/94Annual/webprogram/Paper232183.html.

  • Cintineo, J. L. , M. J. Pavolonis , J. M. Sieglaff , and D. T. Lindsey , 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L. , and Coauthors , 2018: The NOAA/CIMSS ProbSevere model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , and Coauthors , 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment. Bull. Amer. Meteor. Soc., 139, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed spring forecasting experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , and Coauthors, 2020: A real-time, virtual spring forecasting experiment to advance severe weather prediction. Bull. Amer. Meteor. Soc., 101, E2022E2024, https://doi.org/10.1175/BAMS-D-19-0298.1.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D. , R. E. Saffle , and J. W. Wilson , 1998: An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting, 13, 253262, https://doi.org/10.1175/1520-0434(1998)013<0253:AUOTNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Esmaili, R. B. , and Coauthors, 2020: Adapting satellite soundings for operational forecasting within the hazardous weather testbed. Remote Sens., 12, 886, https://doi.org/10.3390/rs12050886.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T. , and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/hazardous weather testbed spring forecasting experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J. , and Coauthors, 2012: The GOES-R proving ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, https://doi.org/10.1175/BAMS-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J. , and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J. , and Coauthors, 2017: The Flooded Locations and Simulated Hydrographs (FLASH) project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., 98, 361372, https://doi.org/10.1175/BAMS-D-15-00247.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L. , D. S. LaDue , and H. Lazrus , 2012: Exploring impacts of rapid-scan radar data on NWS decisions. Wea. Forecasting, 27, 10311044, https://doi.org/10.1175/WAF-D-11-00145.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L. , D. S. LaDue , D. M. Kingfield , and R. Hoffman , 2015: Tornado warning decisions using phased array radar data. Wea. Forecasting, 30, 5778, https://doi.org/10.1175/WAF-D-14-00042.1.

    • Search Google Scholar
    • Export Citation
  • James, J. J. , C. Ling , C. Karstens , J. Correia , K. Calhoun , T. Meyer , and D. Ladue , 2020: Forecasters’ cognitive task analysis and mental workload analysis of issuing probabilistic hazard information (PHI) during FACETs PHI prototype experiment. Wea. Forecasting, 35, 15051521, https://doi.org/10.1175/WAF-D-19-0194.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H. , and Coauthors, 2015: Real-time applications of the variational version of the Local Analysis and Prediction System (vLAPS). Bull. Amer. Meteor. Soc., 96, 20452057, https://doi.org/10.1175/BAMS-D-13-00185.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S. , P. R. Janish , S. J. Weiss , M. E. Baldwin , R. S. Schneider , and H. E. Brooks , 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The Spring Program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S. , S. J. Weiss , J. J. Levit , M. E. Baldwin , and D. R. Bright , 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, https://doi.org/10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Karstens, C. D. , and Coauthors, 2015: Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30, 15511570, https://doi.org/10.1175/WAF-D-14-00163.1.

    • Search Google Scholar
    • Export Citation
  • Karstens, C. D. , and Coauthors, 2018: Development of a human-machine mix for forecasting severe convective events. Wea. Forecasting, 33, 715737, https://doi.org/10.1175/WAF-D-17-0188.1.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M. , and M. A. Magsig , 2009: Leveraging National Weather Service technology for collaboration and training. 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., P1.9, https://ams.confex.com/ams/pdfpapers/150678.pdf.

  • Klockow-McClain, K. E. , 2019: Probability of… what, exactly? Establishing a simple ground rule for the communication of forecast uncertainty. 5th Conf. on Weather, Warnings, and Communications. San Diego, CA, Amer. Meteor. Soc., J8. 1, https:// ams. confex. com/ ams/ 47BC5WxComm/ webprogram/Paper358771.html.

    • Search Google Scholar
    • Export Citation
  • Klockow-McClain, K. E. , and Coauthors, 2020: Putting multiple probabilistic products before end users: The 2019 HWT Emergency Manager experiments. 15th Symp. On Societal Applications: Policy, Research and Practice, Boston, MA, Amer. Meteor. Soc., 17.6, https://ams.confex.com/ams/2020Annual/webprogram/Paper369752.html.

  • Kuhlman, K. M. , T. M. Smith , G. J. Stumpf , K. L. Ortega , and K. L. Manross , 2008: Experimental probabilistic hazard information in practice: Results from the 2008 EWP Spring Program. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 8A.2, https://ams.confex.com/ams/24SLS/techprogram/paper_142027.htm.

  • Kuhlman, K. M. , E. Gruntfest , K. A. Scharfenberg , and G. J. Stumpf , 2009: Beyond storm-based warnings: An advanced WAS*IS workshop to study communication of probabilistic hazardous weather information. 4th Symp. on Policy and Socio-Economic Research, Phoenix, AZ, Amer. Meteor. Soc., 3.5, https://ams.confex.com/ams/89annual/techprogram/paper_150887.htm.

  • LaDue, J. G. , and Coauthors, 2013: The multiple-radar/multiple-sensor (MRMS) severe weather algorithm experiment in the hazardous weather testbed in 2013. 37th Annual Meeting, Madison, WI, National Weather Association, https://nwas.org/annual-meeting-events/past-meetings/2013-agenda/.

  • LaDue, D. , P. Heinselman , and J. Newman , 2010: Strengths and limitations of current radar systems for two stakeholder groups in the Southern Plains. Bull. Amer. Meteor. Soc., 91, 899910, https://doi.org/10.1175/2009BAMS2830.1.

    • Search Google Scholar
    • Export Citation
  • Line, W. E. , T. J. Schmit , D. T. Lindsey , and S. J. Goodman , 2016: Use of geostationary super rapid scan satellite imagery by the storm prediction center. Wea. Forecasting, 31, 483494, https://doi.org/10.1175/WAF-D-15-0135.1.

    • Search Google Scholar
    • Export Citation
  • Ling, C. , L. Hua , C. D. Karstens , G. J. Stumpf , T. M. Smith , K. M. Kuhlman , and L. Rothfusz , 2015: A comparison between WarnGen system and probabilistic hazard information system for severe weather forecasting. 2015 International Annual Meeting, Los Angeles, CA, Human Factors and Ergonomics Society, 1791–1795, https://doi.org/10.1177/1541931215591387.

  • Ling, C. , and Coauthors, 2017: Forecasters’ mental workload while issuing Probabilistic Hazard Information (PHI) during 2016 FACETs PHI Hazardous Weather Testbeds. 33rd Conf. on Environmental Info. Processing Tech., Seattle, WA, Amer. Meteor. Soc., J9.3, https://ams.confex.com/ams/97Annual/webprogram/Paper314172.html.

  • Liu, C. , and S. Heckman , 2012: Total lightning data and real-time severe storm prediction. Conf. on Meteorological and Environmental Instruments and Methods of Observation, Brussels, Belgium, World Meteorological Organization, P5 (10), https://library.wmo.int/pmb_ged/iom_109_en/Session5/P5_10_Liu_Total_Lightning_Data_and_Real-Time_Severe_Storm_Prediction.pdf.

  • Manross, K. L. , and Coauthors, 2021: Updates on hazard service—Probabilistic hazard information (HS-PHI). 11th Conf. on Transition of Research to Operations, Online, Amer. Meteor. Soc., 532, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/384508.

  • Martinaitis, S. M. , and Coauthors, 2017: The HMT Multi-Radar Multi-Sensor Hydro Experiment. Bull. Amer. Meteor. Soc., 98, 347359, https://doi.org/10.1175/BAMS-D-15-00283.1.

    • Search Google Scholar
    • Export Citation
  • Martinaitis, S. M. , and Coauthors, 2020: The 23 June 2016 West Virginia flash flood event as observed through two Hydrometeorology Testbed experiments. Wea. Forecasting, 35, 20992126, https://doi.org/10.1175/WAF-D-20-0016.1.

    • Search Google Scholar
    • Export Citation
  • Nemunaitis-Berry, K. L. , and H. M. Obermeier , 2017: Broadcast meteorologist decision making in the 2016 Hazardous Weather Test Probabilistic Hazard Information Project. Bull. Amer. Meteor. Soc., 98, 20452047, https://doi.org/10.1175/BAMS_9810_2039-2052_Nowcast.

    • Search Google Scholar
    • Export Citation
  • Obermeier, H. , K. L. Nemunaitis-Berry , K. E. Klockow , C. D. Karstens , A. Gerard , and L. P. Rothfusz , 2018: Broadcast meteorologist decision-making in the 2017 Hazardous Weather Testbed Probabilistic Hazard Information Project. 13th Symp. on Societal Applications: Policy, Research & Practice, Austin, TX. Amer. Meteor. Soc., 8.4, https://ams.confex.com/ams/98Annual/webprogram/Paper329820.html.

  • Obermeier, H. , K. L. Nemunaitis-Berry , K. E. Klockow , T. C. Meyer , P. A. Campbell , A. Gerard , and C. Kolakoski , 2019: Communicating probabilistic hazard information: Broadcast meteorologists in the 2018 Hazardous Weather Testbed. 47th Conf. on Broadcast Meteorology, San Diego, CA, Amer. Meteor. Soc., J7.6, https://ams.confex.com/ams/47BC5WxComm/webprogram/Paper358620.html.

  • Obermeier, H. , K. L. Nemunaitis-Berry , K. E. Klockow , T. C. Meyer , P. A. Campbell , A. Gerard , J. E. Trujillo , and C. Carithers , 2020: Communicating probabilistic hazard information: Broadcast meteorologists in the 2018-19 Hazardous Weather Testbed. 15th Symp. on Societal Applications: Policy, Research and Practice, Boston, MA. Amer. Meteor. Soc., 12A.4, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/368267.

  • Ortega, K. L. , J. M. Krause , and A. V. Ryzhkov , 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Search Google Scholar
    • Export Citation
  • Philips, B. , D. Westbrook , D. Pepyne , J. Brotzge , E. J. Bass , and D. Rude , 2008: User evaluations of adaptive scanning patterns in the CASA spring experiment 2007. 2008 IEEE Int. Geoscience and Remote Sensing Symp., Boston, MA, IEEE, 156159, https://doi.org/10.1109/IGARSS.2008.4780051.

    • Search Google Scholar
    • Export Citation
  • Philips, B. , V. Chandrasekar , J. Brotzge , M. Zink , H. Rodriguez , C. League , and W. Diaz , 2010: Performance of the CASA radar network during the May 13, 2009 Anadarko tornado. 15th Symp. on Meteorological Observation and Instrumentation, Atlanta, GA. Amer. Meteor. Soc., 9.3, https://ams.confex.com/ams/90annual/techprogram/paper_165864.htm.

  • Ripberger, J. T. , M. J. Krocak , W. W. Wehde , J. N. Allan , C. Silva , and H. Jenkins-Smith , 2019: Measuring tornado warning reception, comprehension, and response in the United States. Wea. Climate Soc., 11, 863880, https://doi.org/10.1175/WCAS-D-19-0015.1.

    • Search Google Scholar
    • Export Citation
  • Ripberger, J. T. , C. Silva , H. Jenkins-Smith , J. Allan , M. J. Krocak , W. Wehde , and S. Ernst , 2020: Exploring community differences in tornado warning reception, comprehension, and response across the United States. Bull. Amer. Meteor. Soc., 101, 936948, https://doi.org/10.1175/BAMS-D-19-0064.1.

    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P. , R. Schneider , D. Novak , K. Klockow-McClain , A. E. Gerard , C. Karstens , G. J. Stumpf , and T. M. Smith , 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Search Google Scholar
    • Export Citation
  • Rude, D. J. , E. J. Bass , and B. Philips , 2012: Quantifying the impact of adding gap filling radar data on forecaster wind assessments, warnings, and confidence. Meteor. Appl., 19, 355370, https://doi.org/10.1002/met.269.

    • Search Google Scholar
    • Export Citation
  • Sandmael, T. , K. L. Elmore , and B. R. Smith , 2020: A new machine learning-based tornado detection algorithm for the WSR-88D Network. 19th Conf. on Artificial Intelligence for Environmental Science, Boston, MA, Amer. Meteor. Soc., P 364, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/363586.

    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A. , D. L. Andra Jr. , and M. P. Foster , 2003: Operational uses of polarimetric radar in severe local storm prediction. 31st International Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., P4B.3, https://ams.confex.com/ams/pdfpapers/64415.pdf.

  • Scharfenberg, K. A. , D. J. Miller , D. L. Andra Jr., and M. P. Foster , 2004: Overview of spring 2004 WDSS-II demonstration at WFO Norman. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 8B.7, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81808.htm.

  • Scharfenberg, K. A. , and Coauthors , 2005a: The joint polarization experiment: Polarimetric radar in forecasting and warning decision-making. Wea. Forecasting, 20, 775788, https://doi.org/10.1175/WAF881.1.

    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A. , T. M. Smith , and G. J. Stumpf , 2005b: The testing of NSSL multi-sensor applications and data from prototype platforms in NWS forecast operations. Preprints, 21st Conf. on Weather Analysis and Forecasting, Washington, DC, Amer. Meteor. Soc., 6A.2, https://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_95026.htm.

  • Schmit, T. J. , and Coauthors, 2014: Rapid refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 96, 561576, https://doi.org/10.1175/BAMS-D-13-00210.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J. , W. A. Petersen , and L. D. Carey , 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, https://doi.org/10.1175/2009JAMC2237.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J. , W. A. Petersen , and L. D. Carey , 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, https://doi.org/10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Serafin, R. J. , A. E. MacDonald , and R. L. Gall , 2002: Transition of weather research to operations: Opportunities and challenges. Bull. Amer. Meteor. Soc., 83, 377392, https://doi.org/10.1175/1520-0477(2002)083<0377:TOWRTO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M. , L. M. Cronce , W. F. Feltz , K. M. Bedka , M. J. Pavolonis , and A. K. Heidinger , 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126, https://doi.org/10.1175/2010JAMC2496.1.

    • Search Google Scholar
    • Export Citation
  • Silva, C. , J. Ripberger , H. Jenkins-Smith , and M. Krocak , 2017: Establishing the baseline: Public reception, understanding, and responses to severe weather forecasts and warnings in the contiguous United States. Reference Rep., Center for Risk and Crisis Management, 31 pp., http://risk.ou.edu/downloads/news/WX17-Reference-Report.pdf.

  • Silva, C. , J. Ripberger , H. Jenkins-Smith , M. Krocak , and W. Wehde , 2018: Refining the baseline: Public reception, understanding, and responses to severe weather forecasts and warnings in the contiguous United States. Reference Rep., Center for Risk and Crisis Management, 29 pp, http://risk.ou.edu/downloads/news/WX18-Reference-Report.pdf.

  • Silva, C. , J. Ripberger , H. Jenkins-Smith , M. Krocak , S. Ernst , and A. Bell , 2019: Continuing the baseline: Public reception, understanding, and responses to severe weather forecasts and warnings in the contiguous United States. Reference Rep., Center for Risk and Crisis Management, 33 pp, http://risk.ou.edu/downloads/news/WX19-Reference-Report.pdf.

  • Smith, T. M. , G. J. Stumpf , K. L. Manross , and C. Thomas , 2003: Warning Decision Support System B Integrated Information (WDSS-II). Part I: Multiple-sensor severe weather applications development at NSSL during 2002. 19th Intl. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Long Beach, CA, Amer. Meteor. Soc., 14.8, https://ams.confex.com/ams/annual2003/techprogram/paper_56700.htm.

  • Smith, T. M. , and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J. , and Coauthors, 2009: Convective-scale warn-on-forecast system. Bull. Amer. Meteor. Soc., 90, 14871499, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J. , and A. Gerard , 2021: National Weather Service severe weather warnings as threats-in-motion. Wea. Forecasting, 36, 627643, https://doi.org/10.1175/WAF-D-20-0159.1.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J. , T. M. Smith , and C. Thomas , 2003a: The National Severe Storms Laboratory’s contribution to severe weather warning improvement: Multiple-sensor severe weather applications. Atmos. Res., 66, 657669, https://doi.org/10.1016/S0169-8095(03)00079-6.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J. , T. M. Smith , K. L. Manross , and A. E. Gerard , 2003b: Warning Decision Support System B Integrated Information (WDSS-II). Part II: Real-time test at Jackson Mississippi NWSFO. 19th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Long Beach, CA, Amer. Meteor. Soc., P1. 36, https://ams.confex.com/ams/pdfpapers/56695.pdf.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J. , C. D. Karstens , and L. P. Rothfusz , 2015: Probabilistic Hazard Information (PHI): Highlighting the benefits via new verification techniques for FACETs. 3rd Conf. on Weather Warnings and Communication, Raleigh, NC, Amer. Meteor. Soc., 5.7, https://ams.confex.com/ams/43BC3WxWarn/webprogram/Paper272745.html.

  • Stumpf, G. J. , and Coauthors, 2018: Three years of hazard services—Probabilistic hazard information (HS-PHI) experiments at the NOAA hazardous weather testbed. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 112, https://ams.confex.com/ams/29SLS/webprogram/Paper348359.html.

  • Walker, J. R. , W. M. MacKenzie Jr., J. R. Mecikalski , and C. P. Jewett , 2012: An enhanced geostationary satellite-based convective initiation algorithm for 0-2 hour nowcasting with object tracking. J. Appl. Meteor. Climatol., 51, 19311949, https://doi.org/10.1175/JAMC-D-11-0246.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A. , P. L. Heinselman , and Z. Kang , 2016: Exploring applications of eye-tracking in operational meteorology research. Bull. Amer. Meteor. Soc., 97, 20192025, https://doi.org/10.1175/BAMS-D-15-00148.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A. , P. L. Heinselman , and C. M. Kuster , 2017a: Considerations for phased-array radar data use within the National Weather Service. Wea. Forecasting, 32, 19591965, https://doi.org/10.1175/WAF-D-17-0084.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A. , P. L. Heinselman , C. M. Kuster , D. M. Kingfield , and Z. Kang , 2017b: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A. , P. L. Heinselman , and Z. Kang , 2018: Comparing forecaster eye movements during the warning decision process. Wea. Forecasting, 33, 501521, https://doi.org/10.1175/WAF-D-17-0119.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N. , K. A. Wilson , S. M. Martinaitis , H. Vergara , P. L. Heinselman , and J. J. Gourley , 2020: The coupling of NSSL warn-on-forecast and FLASH systems for probabilistic flash flood prediction. J. Hydrometeor., 21, 123141, https://doi.org/10.1175/JHM-D-19-0131.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 14 0 0
Full Text Views 4738 2919 952
PDF Downloads 2042 212 22