C-FOG: Life of Coastal Fog

H. J. S. Fernando University of Notre Dame, Notre Dame, Indiana

Search for other papers by H. J. S. Fernando in
Current site
Google Scholar
PubMed
Close
,
I. Gultepe University of Notre Dame, Notre Dame, Indiana, and Environment and Climate Change Canada, Toronto, and University of Ontario Institute of Technology, Oshawa, Ontario, Canada

Search for other papers by I. Gultepe in
Current site
Google Scholar
PubMed
Close
,
C. Dorman Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by C. Dorman in
Current site
Google Scholar
PubMed
Close
,
E. Pardyjak University of Utah, Salt Lake City, Utah

Search for other papers by E. Pardyjak in
Current site
Google Scholar
PubMed
Close
,
Q. Wang Naval Postgraduate School, Monterey, California

Search for other papers by Q. Wang in
Current site
Google Scholar
PubMed
Close
,
S. W Hoch University of Utah, Salt Lake City, Utah

Search for other papers by S. W Hoch in
Current site
Google Scholar
PubMed
Close
,
D. Richter University of Notre Dame, Notre Dame, Indiana

Search for other papers by D. Richter in
Current site
Google Scholar
PubMed
Close
,
E. Creegan Army Research Laboratory, White Sands Missile Range, New Mexico, and University of Notre Dame, Notre Dame, Indiana

Search for other papers by E. Creegan in
Current site
Google Scholar
PubMed
Close
,
S. Gaberšek Naval Research Laboratory, Monterey, California

Search for other papers by S. Gaberšek in
Current site
Google Scholar
PubMed
Close
,
T. Bullock Wood Environment and Infrastructure Solutions, St. Johns, Newfoundland, Canada

Search for other papers by T. Bullock in
Current site
Google Scholar
PubMed
Close
,
C. Hocut Army Research Laboratory, White Sands Missile Range, New Mexico

Search for other papers by C. Hocut in
Current site
Google Scholar
PubMed
Close
,
R. Chang Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by R. Chang in
Current site
Google Scholar
PubMed
Close
,
D. Alappattu Moss Landing Marine Laboratory, Moss Landing, and Naval Postgraduate School, Monterey, California

Search for other papers by D. Alappattu in
Current site
Google Scholar
PubMed
Close
,
R. Dimitrova University of Notre Dame, Notre Dame, Indiana

Search for other papers by R. Dimitrova in
Current site
Google Scholar
PubMed
Close
,
D. Flagg Naval Research Laboratory, Monterey, California

Search for other papers by D. Flagg in
Current site
Google Scholar
PubMed
Close
,
A. Grachev University of Notre Dame, Notre Dame, Indiana, and NOAA/Earth System Research Laboratories, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by A. Grachev in
Current site
Google Scholar
PubMed
Close
,
R. Krishnamurthy University of Notre Dame, Notre Dame, Indiana, and Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by R. Krishnamurthy in
Current site
Google Scholar
PubMed
Close
,
D. K. Singh University of Utah, Salt Lake City, Utah

Search for other papers by D. K. Singh in
Current site
Google Scholar
PubMed
Close
,
I. Lozovatsky University of Notre Dame, Notre Dame, Indiana

Search for other papers by I. Lozovatsky in
Current site
Google Scholar
PubMed
Close
,
B. Nagare Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by B. Nagare in
Current site
Google Scholar
PubMed
Close
,
A. Sharma University of Notre Dame, Notre Dame, Indiana, and University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by A. Sharma in
Current site
Google Scholar
PubMed
Close
,
S. Wagh University of Notre Dame, Notre Dame, Indiana

Search for other papers by S. Wagh in
Current site
Google Scholar
PubMed
Close
,
C. Wainwright University of Notre Dame, Notre Dame, Indiana

Search for other papers by C. Wainwright in
Current site
Google Scholar
PubMed
Close
,
M. Wroblewski Wood Environment and Infrastructure Solutions, St. Johns, Newfoundland, Canada

Search for other papers by M. Wroblewski in
Current site
Google Scholar
PubMed
Close
,
R. Yamaguchi Naval Postgraduate School, Monterey, California

Search for other papers by R. Yamaguchi in
Current site
Google Scholar
PubMed
Close
,
S. Bardoel University of Notre Dame, Notre Dame, Indiana

Search for other papers by S. Bardoel in
Current site
Google Scholar
PubMed
Close
,
R. S. Coppersmith University of Notre Dame, Notre Dame, Indiana

Search for other papers by R. S. Coppersmith in
Current site
Google Scholar
PubMed
Close
,
N. Chisholm Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by N. Chisholm in
Current site
Google Scholar
PubMed
Close
,
E. Gonzalez University of Notre Dame, Notre Dame, Indiana

Search for other papers by E. Gonzalez in
Current site
Google Scholar
PubMed
Close
,
N. Gunawardena University of Utah, Salt Lake City, Utah

Search for other papers by N. Gunawardena in
Current site
Google Scholar
PubMed
Close
,
O. Hyde University of Notre Dame, Notre Dame, Indiana

Search for other papers by O. Hyde in
Current site
Google Scholar
PubMed
Close
,
T. Morrison University of Utah, Salt Lake City, Utah

Search for other papers by T. Morrison in
Current site
Google Scholar
PubMed
Close
,
A. Olson Naval Postgraduate School, Monterey, California

Search for other papers by A. Olson in
Current site
Google Scholar
PubMed
Close
,
A. Perelet University of Utah, Salt Lake City, Utah

Search for other papers by A. Perelet in
Current site
Google Scholar
PubMed
Close
,
W. Perrie Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

Search for other papers by W. Perrie in
Current site
Google Scholar
PubMed
Close
,
S. Wang University of Notre Dame, Notre Dame, Indiana

Search for other papers by S. Wang in
Current site
Google Scholar
PubMed
Close
, and
B. Wauer Naval Postgraduate School, Monterey, California

Search for other papers by B. Wauer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

C-FOG is a comprehensive bi-national project dealing with the formation, persistence, and dissipation (life cycle) of fog in coastal areas (coastal fog) controlled by land, marine, and atmospheric processes. Given its inherent complexity, coastal-fog literature has mainly focused on case studies, and there is a continuing need for research that integrates across processes (e.g., air–sea–land interactions, environmental flow, aerosol transport, and chemistry), dynamics (two-phase flow and turbulence), microphysics (nucleation, droplet characterization), and thermodynamics (heat transfer and phase changes) through field observations and modeling. Central to C-FOG was a field campaign in eastern Canada from 1 September to 8 October 2018, covering four land sites in Newfoundland and Nova Scotia and an adjacent coastal strip transected by the Research Vessel Hugh R. Sharp. An array of in situ, path-integrating, and remote sensing instruments gathered data across a swath of space–time scales relevant to fog life cycle. Satellite and reanalysis products, routine meteorological observations, numerical weather prediction model (WRF and COAMPS) outputs, large-eddy simulations, and phenomenological modeling underpin the interpretation of field observations in a multiscale and multiplatform framework that helps identify and remedy numerical model deficiencies. An overview of the C-FOG field campaign and some preliminary analysis/findings are presented in this paper.

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0070.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Harindra J.S. Fernando, fernando.10@nd.edu

Abstract

C-FOG is a comprehensive bi-national project dealing with the formation, persistence, and dissipation (life cycle) of fog in coastal areas (coastal fog) controlled by land, marine, and atmospheric processes. Given its inherent complexity, coastal-fog literature has mainly focused on case studies, and there is a continuing need for research that integrates across processes (e.g., air–sea–land interactions, environmental flow, aerosol transport, and chemistry), dynamics (two-phase flow and turbulence), microphysics (nucleation, droplet characterization), and thermodynamics (heat transfer and phase changes) through field observations and modeling. Central to C-FOG was a field campaign in eastern Canada from 1 September to 8 October 2018, covering four land sites in Newfoundland and Nova Scotia and an adjacent coastal strip transected by the Research Vessel Hugh R. Sharp. An array of in situ, path-integrating, and remote sensing instruments gathered data across a swath of space–time scales relevant to fog life cycle. Satellite and reanalysis products, routine meteorological observations, numerical weather prediction model (WRF and COAMPS) outputs, large-eddy simulations, and phenomenological modeling underpin the interpretation of field observations in a multiscale and multiplatform framework that helps identify and remedy numerical model deficiencies. An overview of the C-FOG field campaign and some preliminary analysis/findings are presented in this paper.

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0070.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Harindra J.S. Fernando, fernando.10@nd.edu

Supplementary Materials

    • Supplemental Materials (PDF 11.02 MB)
Save
  • Anderson, J. B., 1931: Observations from airplanes of cloud and fog conditions along the southern California coast. Mon. Wea. Rev., 59, 264270, https://doi.org/10.1175/1520-0493(1931)59<264:OFAOCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ångström, A., 1920: Applications of heat radiation measurements to problems of the evaporation from lakes and heat convection at their surfaces. Geogr. Ann., 2, 237252, https://doi.org/10.1080/20014422.1920.11880772.

    • Search Google Scholar
    • Export Citation
  • Bang, C. H., J. W. Lee, and S. Y. Hong, 2009: Predictability experiments of fog and visibility in local airports over Korea using the WRF model. J. Korean Soc. Atmos. Environ., 24, 92101.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid Part I. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113133, https://doi.org/10.1017/S002211205900009X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bergot, T., 2013: Small-scale structure of radiation fog: A large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 139, 10991112, https://doi.org/10.1002/qj.2051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I., J. Price, I. Kudzotsa, H. Kokkola, and S. Romakkaniemi, 2018: Aerosol–fog interaction and the transition to well-mixed radiation fog. Atmos. Chem. Phys., 18, 78277840, https://doi.org/10.5194/acp-18-7827-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, I. S., 1926: The ratio of heat losses by conduction and evaporation from water surfaces. Phys. Rev., 27, 779787, https://doi.org/10.1103/PhysRev.27.779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniels, Z. D., 2019: Quantifying HEL weapon system performance in a coastal fog environment. M.S. thesis, Meteorology Department, Naval Postgraduate School, 59 pp.

  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. A., and Coauthors, 1999: The MM5 at the Air Force Weather Agency—New products to support military operations. Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 4.17, https://ams.confex.com/ams/99annual/abstracts/1125.htm.

  • Dorman, C. E., J. Mejia, D. Koračin, and D. McEvoy, 2017: Worldwide marine fog occurrence and climatology. Marine Fog Challenges and Advancements in Observations, Modeling, and Forecasting, D. Koračin and C. E. Dorman, Eds., Springer, 7152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., J. Mejia, D. Koračin, and D. McEvoy, 2020: World marine fog analysis based on 58-years of ship observations. Int. J. Climatol., 40, 145168, https://doi.org/10.1002/joc.6200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C. E., S.W. Hoch, I. Gultepe, H.J.S. Fernando, and R. Krishnamurthy, 2021: Large scale synoptic systems and fog during the C-FOG field experiment. Bound. Layer Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 1991: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech., 23, 455493, https://doi.org/10.1146/annurev.fl.23.010191.002323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. R. Hunt, 1997: Turbulence, waves and mixing at shear-free density interfaces. Part I. A theoretical model. J. Fluid Mech., 347, 197234, https://doi.org/10.1017/S0022112097006514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, S. T., J. E. Bills, B. J. Elmore, S. R. Bose-Pillai, J. E. Schmidt, and K. J. Keefer, 2019: Assessing free-space optical communications through 4D weather cubes. 2019 IEEE Aerospace Conf., Big Sky, Montana, IEEE, 112, https://doi.org/10.1109/AERO.2019.8741941.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and G. Thompson, 2019: Cloud microphysics across scales for weather and climate. Current Trends in the Representation of Physical Processes in Weather and Climate Models, D. A. Randall et al., Eds., Springer, 7194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghude, S. D., and Coauthors, 2017: Winter fog experiment over the Indo-Gangetic plains of India. Current Sci ., 112,767784, https://doi.org/10.18520/cs/v112/i04/767-784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S. I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., L. S. Leo, H. J. S. Fernando, and C. W. Fairall, E. Creegan, B. W. Blomquist, A. J. Christman, and C. M. Hocut, 2018: Air-sea/land interaction in the coastal zone. Bound.-Layer Meteor ., 167, 181210, https://doi.org/10.1007/s10546-017-0326-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, https://doi.org/10.1007/s00024-007-0211-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90, 341360, https://doi.org/10.1175/2008BAMS2354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2014: Ice fog in Arctic during FRAM–Ice Fog project: Aviation and nowcasting applications. Bull. Amer. Meteor. Soc., 95, 211226, https://doi.org/10.1175/BAMS-D-11-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2015: A review on ice fog measurements and modeling. Atmos. Res., 151, 219, https://doi.org/10.1016/j.atmosres.2014.04.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2016: An overview of the MATERHORN fog project: Observations and predictability. Pure Appl. Geophys., 173, 29833010, https://doi.org/10.1007/s00024-016-1374-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and J. A. Milbrandt, and B. Zhou, 2017: Marine fog: A review on microphysics and visibility prediction. Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting, D. Koracin and C. Dorman, Eds., Springer, 345394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gurka, J. J., 1978: The role of inward mixing in the dissipation of fog and stratus. Mon. Wea. Rev., 106, 16331635, https://doi.org/10.1175/1520-0493(1978)106<1633:TROIMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., T. Bergot, T. Elias, R. Tardif, D. Carrer, P. Chazette, and L. Gomes, 2010: PARISFOG: Shedding new light on fog physical processes. Bull. Amer. Meteor. Soc., 91, 767783, https://doi.org/10.1175/2009BAMS2671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., 1980: Relationship between fog condensation nuclei and fog microstructure. J. Atmos. Sci., 37, 18541867, https://doi.org/10.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., T. Bullock, J. Beale, and S. Beale, 2020: Characterizing and predicting marine fog offshore Newfoundland and Labrador. Wea. Forecasting, 35, 347365, https://doi.org/10.1175/WAF-D-19-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1918: Some problems of evaporation. Philos. Mag., 35, 270280, https://doi.org/10.1080/14786440308635761.

  • Kim, C. K., M. Stuefer, C. G. Schmitt, A. Heymsfield, and G. Thompson, 2014: Numerical modeling of ice fog in interior Alaska using the weather research and forecasting model. Pure Appl. Geophys., 171, 1963–1982, https://doi.org/10.1007/s00024-013-0766-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., J. Lewis, W. T. Thompson, C. E. Dorman, and J. A. Businger, 2001: Transition of stratus into fog along the California coast: Observations and modeling. J. Atmos. Sci., 58, 17141731, https://doi.org/10.1175/1520-0469(2001)058<1714:TOSIFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., J. A. Businger, C. E. Dorman, and J. M. Lewis, 2005: Formation, evolution, and dissipation of coastal sea fog. Bound.-Layer Meteor., 117, 447478, https://doi.org/10.1007/s10546-005-2772-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., C. E. Dorman, J. M. Lewis, J. G. Hudson, E. M. Wilcox, and A. Torregrosa, 2014: Marine fog: A review. Atmos. Res., 143, 142175, https://doi.org/10.1016/j.atmosres.2013.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1948: Fog development at San Diego, California. J. Mar. Res., VII, 337346.

  • Leipper, D. F., 1994: Fog on the U.S. West Coast: A review. Bull. Amer. Meteor. Soc., 75, 229240, https://doi.org/10.1175/1520-0477(1994)075<0229:FOTUWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, P., G. Fu, and C. Lu, 2012: Large-scale environmental influences on the onset, maintenance, and dissipation of six sea fog cases over the Yellow Sea. Pure Appl. Geophys., 169, 9831000, https://doi.org/10.1007/s00024-011-0348-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., Z. Zhang, Z. Pu, and F. Wang, 2017: Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model. J. Meteor. Res., 31, 874889, https://doi.org/10.1007/s13351-017-6187-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, D. Y., W. L. Yan, J. Yang, M. J. Pu, S. J. Niu, and Z. H. Li, 2016: A study of the physical processes of an advection fog boundary layer. Bound.-Layer Meteor., 158, 125138, https://doi.org/10.1007/s10546-015-0076-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., C. Wainwright, E. Creegan, and H. J. S. Fernando, 2021: Ocean turbulence and mixing near the shelf break south-east of Nova Scotia. Bound.-Layer Meteor ., https://doi.org/10.1007/s10546-020-00576-z, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maronga, B., and F. C. Bosveld, 2017: Key parameters for the life cycle of nocturnal radiation fog: A comprehensive large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 143, 24632480, https://doi.org/10.1002/qj.3100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1957: The oceans as source of cloud-forming nuclei. Geofis. Pura Appl., 36, 148155, https://doi.org/10.1007/BF01993002.

  • Mazoyer, M., C. Lac, O. Thouron, T. Bergot, V. Masson, and L. Musson-Genon, 2017: Large eddy simulation of radiation fog: Impact of dynamics on the fog life cycle. Atmos. Chem. Phys., 17, 13 01713 035, https://doi.org/10.5194/acp-17-13017-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGraw, R., and Y. Liu, 2003: Kinetic potential and barrier crossing: A model for warm cloud drizzle formation. Phys. Rev. Lett., 90, 018501, https://doi.org/10.1103/PhysRevLett.90.018501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, M. B., J. E. Jiusto, and G. G. Lala, 1980: Measurements of visual range and radiation-fog (Haze) microphysics. J. Atmos. Sci., 37, 622629, https://doi.org/10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michaelides, S. C., Ed., 2005: Short range forecasting methods of fog, visibility and low clouds: Workshop proceedings. Earth System Science and Environmental Management Final Rep. COST-722 Act, 130 pp.

  • Milbrandt, J. A., M. K. Yau, J. Mailhot, S. Bélair, and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, https://doi.org/10.1175/2009MWR3121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and F. S. Marzano, 2015: Microphysical characterization of free space optical link due to hydrometeor and fog effects. Appl. Opt., 54, 67876803, https://doi.org/10.1364/AO.54.006787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in clouds and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, J. N., 1968: Fog. Sci. Amer., 219, 7482, https://doi.org/10.1038/scientificamerican1268-74.

  • Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461493, https://doi.org/10.1023/A:1002490423389.

  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noonkester, V. R., 1979: Coastal marine fog in Southern California. Mon. Wea. Rev., 107, 830851, https://doi.org/10.1175/1520-0493(1979)107<0830:CMFISC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, T. A., L. C. Sloan, P. Y. Chuang, I. C. Faloona, and J. A. Johnstone, 2013: Multidecadal simulation of coastal fog with a regional climate model. Climate Dyn ., 40, 28012812, https://doi.org/10.1007/s00382-012-1486-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pósfai, M., J. R. Anderson, P. R. Buseck, and H. Sievering, 1999: Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Atmos., 104, 21 68521 693, https://doi.org/10.1029/1999JD900208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. D., and Coauthors, 2018: LANFEX: A field and modeling study to improve our understanding and forecasting of radiation fog. Bull. Amer. Meteor. Soc., 99, 20612077, https://doi.org/10.1175/BAMS-D-16-0299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., C. N. Chachere, S. W. Hoch, E. Pardyjak, and I. Gultepe, 2016: Numerical prediction of cold season fog events over complex terrain: The performance of the WRF model during MATERHORN-fog and early evaluation. Pure Appl. Geophys., 173, 31653186, https://doi.org/10.1007/s00024-016-1375-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Román-Cascón, C., G. J. Steeneveld, C. Yagüe, M. Sastre, J. A. Arrillaga, and G. Maqueda, 2016: Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quart. J. Roy. Meteor. Soc., 142, 10481063, https://doi.org/10.1002/qj.2708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simei, X., B. Chenglan, J. Dezhong, and Z. Bin, 2001: Role of sea ice in air-sea exchange and its relation to sea fog. Chinese J. Polar Sci., 12, 119132.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1999: Gravity Currents: In the Environment and the Laboratory. 2nd ed. Cambridge University Press, 260 pp.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Spirig, R., and Coauthors, 2019: Probing the fog life cycles in the Namib Desert. Bull. Amer. Meteor. Soc., 100, 24912507, https://doi.org/10.1175/BAMS-D-18-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., R. J. Ronda, and A. A. M. Holtslag, 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound.-Layer Meteor., 154, 265289, https://doi.org/10.1007/s10546-014-9973-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., and T. T. Warner, 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteor., 38, 385404, https://doi.org/10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1942: Oceanography for Meteorologists. Prentice-Hall, 246 pp.

  • Taylor, G. I., 1917: The formation of fog and mist. Quart. J. Roy. Meteor. Soc., 43, 241268, https://doi.org/10.1002/qj.49704318302.

  • Thompson, G., and Coauthors, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torregrosa, A., T. O’Brien, and I. Faloon, 2014: Coastal fog, climate change, and the environment. Eos, Trans. Amer. Geophys. Union, 95, 473474, https://doi.org/10.1002/2014EO500001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasseur, H., and C. J. Gibbins, 1996: Inference of fog characteristics from attenuation measurements at millimeter and optical wavelengths. Radio Sci ., 31, 10891097, https://doi.org/10.1029/96RS01725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wainwright, C., and D. Richter, 2021: Investigating the sensitivity of marine fog to physical and microphysical processes using large-eddy simulation. Bound.-Layer Meteor ., https://doi.org/10.1007/s10546-020-00599-6, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkinson, J. M., A. N. Porson, F. J. Bornemann, M. Weeks, P. R. Field, and A. P. Lock, 2013: Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 139, 488500, https://doi.org/10.1002/qj.1975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 1992: International meteorological vocabulary. WMO-182, 784 pp.

  • Zhang, D., T. Sullivan, N. E. O’Connor, R. Gillespie, and F. Regan, 2015: Coastal fog detection using visual sensing. OCEANS 2015, Genoa, Italy, IEEE, 1–5, https://doi.org/10.1109/OCEANS-Genova.2015.7271683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S. P., S. P. Xie, Q. Y. Liu, Y. Q. Yang, X. G. Wang, and Z. P. Ren, 2009: Seasonal variations of Yellow Sea fog: Observations and mechanisms. J. Climate, 22, 67586772, https://doi.org/10.1175/2009JCLI2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 0 0
Full Text Views 4443 1527 146
PDF Downloads 4189 798 113