The Advanced Very High Resolution Radiometer: Contributing to Earth Observations for over 40 Years

S. Kalluri NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by S. Kalluri in
Current site
Google Scholar
PubMed
Close
,
C. Cao NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by C. Cao in
Current site
Google Scholar
PubMed
Close
,
A. Heidinger NOAA/NESDIS, Madison, Wisconsin

Search for other papers by A. Heidinger in
Current site
Google Scholar
PubMed
Close
,
A. Ignatov NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by A. Ignatov in
Current site
Google Scholar
PubMed
Close
,
J. Key NOAA/NESDIS/STAR, Madison, Wisconsin

Search for other papers by J. Key in
Current site
Google Scholar
PubMed
Close
, and
T. Smith NOAA/NESDIS/STAR, College Park, Maryland

Search for other papers by T. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Advanced Very High Resolution Radiometers (AVHRR), which have been flying on National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting weather satellites since 1978, provide the longest global record of Earth observations from a visible–infrared imager. Experience gained through AVHRRs has been integral to the development of the new-generation sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and associated data processing algorithms in the United States, as well as a similar class of sensor by space agencies around the world. Over four decades of data have been vital for studying Earth and its change. The MetOp-C satellite that was successfully launched in 2018 carries the last AVHRR. This article reviews the contributions of AVHRR in building a continuous global data record over the last 40 years on the occasion of its last launch.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Kalluri, satya.kalluri@noaa.gov

Abstract

The Advanced Very High Resolution Radiometers (AVHRR), which have been flying on National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting weather satellites since 1978, provide the longest global record of Earth observations from a visible–infrared imager. Experience gained through AVHRRs has been integral to the development of the new-generation sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and associated data processing algorithms in the United States, as well as a similar class of sensor by space agencies around the world. Over four decades of data have been vital for studying Earth and its change. The MetOp-C satellite that was successfully launched in 2018 carries the last AVHRR. This article reviews the contributions of AVHRR in building a continuous global data record over the last 40 years on the occasion of its last launch.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Kalluri, satya.kalluri@noaa.gov
Save
  • Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger, 2011: Pollution from China increases cloud droplet number, suppresses rain over the East China Sea. Geophys. Res. Lett., 38, L09704, https://doi.org/10.1029/2011GL047235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. E., and E. B. Brickley, 2012: Evaluating the use of remote sensing data in the U.S. Agency for International Development Famine Early Warning Systems network. J. Appl. Remote Sens., 6, 063511, https://doi.org/10.1117/1.JRS.6.063511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, B. A., M. Schmidt-Grottrup, and T. Viehoff, 1992: Methods for digital analysis of AVHRR sea ice images. IEEE Trans. Geosci. Remote Sens., 30, 589602, https://doi.org/10.1109/36.142937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., J. Sullivan, E. Maturi, and J. Sapper, 2004: The effect of orbit drift on the calibration of the 3.7 μm channel of the AVHRR onboard NOAA-14 and its impact on night-time sea surface temperature retrievals. Int. J. Remote Sens., 25, 975986, https://doi.org/10.1080/0143116031000095899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., X. Xiong, A. Wu, and X. Wu, 2008: Assessing the consistency of AVHRR and MODIS L1B reflectance for generating fundamental climate date records. J. Geophys. Res., 113, D09114, https://doi.org/10.1029/2007JD009363.

    • Search Google Scholar
    • Export Citation
  • Cao, C., F. J. D. Luccia, X. Xiong, R. Wolfe, and F. Weng, 2014: Early on-orbit performance of the visible infrared imaging radiometer suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens., 52, 11421156, https://doi.org/10.1109/TGRS.2013.2247768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cracknell, A. P., 1997: The Advanced Very High Resolution Radiometer (AVHRR). Taylor and Francis, 534 pp.

  • Dworak, R., and J. Key, 2009: Twenty years of polar winds from AVHRR: Validation and comparison to the ERA-40. J. Appl. Meteor. Climatol., 48, 2440, https://doi.org/10.1175/2008JAMC1863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandes, R., H. Zhao, X. Wang, J. Key, X. Qu, and A. Hall, 2009: Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations. Geophys. Res. Lett., 36, L21702, https://doi.org/10.1029/2009GL040057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geogdzhayev, I. V., M. I. Mishchenko, L. Liu, and L. Remer, 2004: Global two-channel AVHRR aerosol climatology: Effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals. J. Quant. Spectrosc. Radiat. Transfer, 88, 4759, https://doi.org/10.1016/j.jqsrt.2004.03.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griggs, M., 1975: Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Control Assoc., 25, 622626, https://doi.org/10.1080/00022470.1975.10470118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, https://doi.org/10.1080/014311698215333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauser, A., D. Oesch, N. Foppa, and S. Wunderle, 2005: NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res., 110, D08204, https://doi.org/10.1029/2004JD005439.

    • Search Google Scholar
    • Export Citation
  • He, K., A. Ignatov, Y. Kihai, C. Cao, and J. Stroup, 2016: Sensor Stability for SST (3S): Toward improved long-term characterization of AVHRR thermal bands. Remote Sens., 8, 346, https://doi.org/10.3390/rs8040346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., C. Cao, and J. T. Sullivan, 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107, 4702, https://doi.org/10.1029/2001JD002035.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., W. C. Straka, C. C. Molling, J. T. Sullivan, and X. Wu, 2010: Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens., 31, 64936517, https://doi.org/10.1080/01431161.2010.496472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/BAMS-D-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higurashi, A., and T. Nakajima, 1999: Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR. J. Atmos. Sci., 56, 924941, https://doi.org/10.1175/1520-0469(1999)056<0924:DOATCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., 1986: Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens., 7, 14171434, https://doi.org/10.1080/01431168608948945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., E. Vermote, Y. J. Kaufman, D. Tanre, and V. Kalb, 1992: Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Trans. Geosci. Remote Sens., 30, 212222, https://doi.org/10.1109/36.134072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and Coauthors, 2013: The ESA Climate Change Initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, https://doi.org/10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., J. Lee, A. M. Sayer, N. Carletta, S.-H. Chen, C. J. Tucker, B. N. Holben, and S.-C. Tsay, 2017: Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos., 122, 99689989, https://doi.org/10.1002/2017JD026932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchinson, C. F., 1991: Uses of satellite data for famine early warning in sub-Saharan Africa. Int. J. Remote Sens ., 12, 14051421, https://doi.org/10.1080/01431169108929733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., L. Stowe, and R. Singh, 1998: Sensitivity study of the Ångström exponent derived from AVHRR over the oceans. Adv. Space Res., 21, 439442, https://doi.org/10.1016/S0273-1177(97)00926-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., J. Sapper, S. Cox, I. Laszlo, N. R. Nalli, and K. B. Kidwell, 2004a: Operational Aerosol Observations (AEROBS) from AVHRR/3 on board NOAA-KLM satellites. J. Atmos. Oceanic Technol., 21, 326, https://doi.org/10.1175/1520-0426(2004)021<0003:OAOAFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., I. Laszlo, E. D. Harrod, K. B. Kidwell, and G. P. Goodrum, 2004b: Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int. J. Remote Sens., 25, 52555266, https://doi.org/10.1080/01431160410001712981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and Coauthors, 2016: AVHRR GAC SST reanalysis version 1 (RAN1). Remote Sens., 8, 315, https://doi.org/10.3390/rs8040315.

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • James, M. E., and S. N. V. Kalluri, 1994: The pathfinder AVHRR land data set—An improved coarse resolution data set for terrestrial monitoring. Int. J. Remote Sens., 15, 33473363, https://doi.org/10.1080/01431169408954335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Justice, C. O., J. R. G. Townshend, B. N. Holben, and C. J. Tucker, 1985: Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens., 6, 12711318, https://doi.org/10.1080/01431168508948281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalluri, S., C. Cao, A. Heidinger, A. Ignatov, and J. Key, 2019: The last Advanced Very High Resolution Radiometer. 2019 IEEE Int. Geoscience and Remote Sensing Symp., Yokohama, Japan, IEEE, 8388–8391, https://doi.org/10.1109/IGARSS.2019.8897974.

    • Crossref
    • Export Citation
  • Karlsson, K. G., and Coauthors, 2013: CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem. Phys., 13, 53515367, https://doi.org/10.5194/acp-13-5351-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and C. Sendra, 1988: Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens., 9, 13571381, https://doi.org/10.1080/01431168808954942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., and M. Haefliger, 1992: Arctic ice surface temperature retrieval from AVHRR thermal channels. J. Geophys. Res., 97, 58855893, https://doi.org/10.1029/92JD00348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., X. J. Wang, Y. H. Liu, R. Dworak, and A. Letterly, 2016: The AVHRR Polar Pathfinder climate data records. Remote Sens ., 8, 167, https://doi.org/10.3390/rs8030167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., Y. Liu, and X. Wang, 2019a, National Center for Environmental Information: NOAA Climate Data Record of AVHRR Polar Pathfinder Extended (APP-X), version 2, NOAA NCEI, accessed 18 January 2021, https://doi.org/10.25921/AE96-0E57.

    • Crossref
    • Export Citation
  • Key, J., Y. Liu, and X. Wang, 2019b, National Center for Environmental Information: NOAA Climate Data Record of AVHRR Polar Pathfinder (APP), version 2, NOAA NCEI, accessed 18 January 2021, https://doi.org/10.25921/X2X1-JR34.

    • Crossref
    • Export Citation
  • Kidwell, K. B., 1995: NOAA Polar Orbiter data (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, NOAA-12, and NOAA-14) users guide. NOAA/NESDIS Rep., 410 pp.

  • Kilpatrick, K. A., G. P. Podestá, and R. Evans, 2001: Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106, 91799197, https://doi.org/10.1029/1999JC000065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., 1997: Global drought watch from space. Bull. Amer. Meteor. Soc., 78, 621636, https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kriebel, K., G. Gesell, M. Kaestner, and H. Mannstein, 1994: Cloud detection in AVHRR and ATSR data with APOLLO. Proc. SPIE, 2309, https://doi.org/10.1117/12.196703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laszlo, I., H. Liu, and A. Ignatov, 2008: Comparison of single-channel and multichannel aerosol optical depths derived from MAPSS data. J. Geophys. Res., 113, D19S90, https://doi.org/10.1029/2007JD009664.

    • Search Google Scholar
    • Export Citation
  • Letterly, A., J. Key, and Y. H. Liu, 2018: Arctic climate: Changes in sea ice extent outweigh changes in snow cover. Cryosphere, 12, 33733382, https://doi.org/10.5194/tc-12-3373-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Y. J. Kaufamn, C. Ichoku, R. Fraser, A. Trishchenko, L. Giglio, J.-Z. Jin, and X. Yu, 2001: A review of AVHRR-based active fire detection algorithms: Principles, limitations and recommendations. Global and Regional Vegetation Fire Monitoring from Space: Planning a Coordinated International Effort, F. J. Ahren, J. G. Goldammer, and C. O. Justice, Eds., SPB Academic Publishing, 199–225.

  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP Discover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, https://doi.org/10.1080/014311600210191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maiden, M. E., and S. Greco, 1994: NASA’s Pathfinder data set programme: Land surface parameters. Int. J. Remote Sens., 15, 33333345, https://doi.org/10.1080/01431169408954334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2015: External influences on modeled and observed cloud trends. J. Climate, 28, 48204840, https://doi.org/10.1175/JCLI-D-14-00734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J., C. Fowler, J. Key, T. Scambos, T. Hutchinson, and W. Emery, 1997: AVHRR-based Polar Pathfinder products for modeling applications. Ann. Glaciol., 25, 388392, https://doi.org/10.3189/S0260305500014336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maturi, E., A. Harris, J. Mittaz, J. Sapper, G. Wick, X. Zhu, P. Dash, and P. Koner, 2017: A new high-resolution sea surface temperature blended analysis. Bull. Amer. Meteor. Soc., 98, 10151026, https://doi.org/10.1175/BAMS-D-15-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., W. G. Pichel, and C. C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11 58711 601, https://doi.org/10.1029/JC090iC06p11587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., J. A. Maslanik, C. W. Fowler, and J. R. Key, 1997: Multiparameter AVHRR-derived products for Arctic climate studies. Earth Interact ., 1, https://doi.org/10.1175/1087-3562(1997)001<0001:MADPFA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merchant, C. J., and Coauthors, 2014: Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J., 1, 179191, https://doi.org/10.1002/gdj3.20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., K. Bedka, Q. Trepte, C. R. Yost, S. T. Bedka, B. Scarino, K. Khlopenkov, and M. M. Khaiyer, 2016: A consistent long-term cloud and clear-sky radiation property dataset from the Advanced Very High Resolution Radiometer (AVHRR). Climate Algorithm Theoretical Basis Doc., revision, 159 pp., https://doi.org/10.789/V5HT2M8T.

  • Mishchenko, M. I., and I. V. Geogdzhayev, 2007: Satellite remote sensing reveals regional tropospheric aerosol trends. Opt. Express, 15, 74237438, https://doi.org/10.1364/OE.15.007423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., I. V. Geogdzhayev, B. Cairns, W. B. Rossow, and A. A. Lacis, 1999: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. Appl. Opt., 38, 73257341, https://doi.org/10.1364/AO.38.007325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: CoastWatch East Coast node. Accessed 12 August 2020, https://eastcoast.coastwatch.noaa.gov/index.php.

  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973984, https://doi.org/10.1175/1520-0450-30.7.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, P., R. Bonsignori, P. Schlüssel, F. Schmülling, L. Spezzi, P. Watts, and I. Zerfowski, 2016: Overview of calibration and validation activities for the EUMETSAT polar system: Second generation (EPS-SG) visible/infrared imager (METimage). Proc. SPIE, 10000, https://doi.org/10.1117/12.2240938.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and F. P. J. Valero, 1995: A validation of a satellite cloud retrieval during ASTEX. J. Atmos. Sci., 52, 29853001, https://doi.org/10.1175/1520-0469(1995)052<2985:AVOASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, B., 1998: The interactive multisensor snow and ice mapping system. Hydrol. Processes, 12, 15371546, https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1537::AID-HYP679>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and J. Chen, 1999: Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens., 20, 34853491, https://doi.org/10.1080/014311699211147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., L. L. Stowe, and E. P. McClain, 1989: Remote sensing of aerosols over the oceans using AVHRR data: Theory, practice and applications. Int. J. Remote Sens., 10, 743749, https://doi.org/10.1080/01431168908903915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, D. J., S. E. Randolph, R. W. Snow, and S. I. Hay, 2002: Satellite imagery in the study and forecast of malaria. Nature, 415, 710715, https://doi.org/10.1038/415710a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanov, P., G. Gutman, and I. Csiszar, 2000: Automated monitoring of snow over North America with multispectral satellite data. J. Appl. Meteor., 39, 18661880, https://doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S. R., D. F. McGinnis, and J. A. Gatlin, 1981: Use of NOAA/AVHRR visible and near-infrared data for land remote sensing. NOAA Tech. Rep. NESS 84, 48 pp.

  • Simpson, J. J., J. R. Stitt, and M. Sienko, 1998: Improved estimates of the areal extent of snow cover from AVHRR data. J. Hydrol., 204, 123, https://doi.org/10.1016/S0022-1694(97)00087-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., R. M. Carey, and P. P. Pellegrino, 1992: Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data. Geophys. Res. Lett., 19, 159162, https://doi.org/10.1029/91GL02958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., A. M. Ignatov, and R. R. Singh, 1997: Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic And Atmospheric Administration. J. Geophys. Res., 102, 16 92316 934, https://doi.org/10.1029/96JD02132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., H. Jacobowitz, G. Ohring, K. R. Knapp, and N. R. Nalli, 2002: The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15, 12431260, https://doi.org/10.1175/1520-0442(2002)015<1243:TAVHRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, A. E., and L. L. Stowe, 1993: Comparing stratospheric aerosols from El Chichón and Mount Pinatubo using AVHRR data. Geophys. Res. Lett., 20, 11831186, https://doi.org/10.1029/93GL01519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, S. M., A. K. Heidinger, and M. J. Pavolonis, 2004: Comparison of NOAA’s operational AVHRR-derived cloud amount to other satellite-derived cloud climatologies. J. Climate, 17, 48054822, https://doi.org/10.1175/JCLI-3242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townshend, J. R. G., 1994: Global data sets for land applications from the Advanced Very High Resolution Radiometer: An introduction. Int. J. Remote Sens., 15, 33193332, https://doi.org/10.1080/01431169408954333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., 2009: Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17, 18 and MetOp-A. Remote Sens. Environ., 113, 335341, https://doi.org/10.1016/j.rse.2008.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., and P. J. Sellers, 1986: Satellite remote-sensing of primary production. Int. J. Remote Sens., 7, 13951416, https://doi.org/10.1080/01431168608948944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USCCSP, 2004: Our changing planet: The U.S. Climate Change Science Program for fiscal years 2004 and 2005: A report. USCCSP Rep., 159 pp.

  • Van Hoolst, R., H. Eerens, D. Haesen, A. Royer, L. Bydekerke, O. Rojas, Y. Li, and P. Racionzer, 2016: FAO’s AVHRR-based Agricultural Stress Index System (ASIS) for global drought monitoring. Int. J. Remote Sens., 37, 418439, https://doi.org/10.1080/01431161.2015.1126378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205224, https://doi.org/10.1175/BAMS-86-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J. Climate, 15, 399419, https://doi.org/10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L. K., and C. Y. Cao, 2008: On-orbit calibration assessment of AVHRR longwave channels on MetOp-A using IASI. IEEE Trans. Geosci. Remote Sens., 46, 40054013, https://doi.org/10.1109/TGRS.2008.2001062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. J., and J. R. Key, 2003: Recent trends in Arctic surface, cloud, and radiation properties from space. Science, 299, 17251728, https://doi.org/10.1126/science.1078065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., and A. Ignatov, 2014: In situ SST quality monitor (iQuam). J. Atmos. Oceanic Technol., 31, 164180, https://doi.org/10.1175/JTECH-D-13-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Liu, and D. Yan, 2017: Comparisons of global land surface seasonality and phenology derived from AVHRR, MODIS, and VIIRS data. J. Geophys. Res. Biogeosci., 122, 15061525, https://doi.org/10.1002/2017JG003811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and R. Fernandes, 2009: Daily snow cover estimation from Advanced Very High Resolution Radiometer Polar Pathfinder data over Northern Hemisphere land surfaces during 1982–2004. J. Geophys. Res., 114, D05113, https://doi.org/10.1029/2008JD011272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T. X. P., I. Laszlo, W. Guo, A. Heidinger, C. Cao, A. Jelenak, D. Tarpley, and J. Sullivan, 2008: Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. J. Geophys. Res., 113, D07201, https://doi.org/10.1029/2007JD009061.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and Coauthors, 2017: NOAA Climate Data Record (CDR) of AVHRR daily and monthly aerosol optical thickness (AOT) over global oceans, version 3. NOAA NCEI, accessed 18 January 2021, https://doi.org/10.7289/V5BZ642P.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 0 0
Full Text Views 2654 596 78
PDF Downloads 1409 399 55