• Albrecht, B., and Coauthors, 2019: Cloud System Evolution in the Trades (CSET): Following the evolution of boundary layer cloud systems with the NSF–NCAR GV. Bull. Amer. Meteor. Soc., 100, 93121, https://doi.org/10.1175/BAMS-D-17-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K., 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., J7.1, https://ams.confex.com/ams/84Annual/techprogram/paper_74349.htm.

    • Search Google Scholar
    • Export Citation
  • Bailey, A., D. Noone, M. Berkelhammer, H. C. Steen-Larsen, and P. Sato, 2015: The stability and calibration of water vapor isotope ratio measurements during long-term deployments. Atmos. Meas. Tech., 8, 45214538, https://doi.org/10.5194/amt-8-4521-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, A., H. K. A. Singh, and J. Nusbaumer, 2019: Evaluating a moist isentropic framework for poleward moisture transport: Implications for water isotopes over Antarctica. Geophys. Res. Lett., 46, 78197827, https://doi.org/10.1029/2019GL082965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 51922 544, https://doi.org/10.1029/98JD01020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and Coauthors, 2015: The Deep Convective Clouds and Chemistry (DC3) field campaign. Bull. Amer. Meteor. Soc., 96, 12811309, https://doi.org/10.1175/BAMS-D-13-00290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and Coauthors, 2016: Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. J. Geophys. Res. Atmos., 121, 42724295, https://doi.org/10.1002/2015JD024570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berkes, F., P. Hoor, H. Bozem, D. Kunkel, M. Sprenger, and S. Henne, 2016: Airborne observation of mixing across the entrainment zone during PARADE 2011. Atmos. Chem. Phys., 16, 60116025, https://doi.org/10.5194/acp-16-6011-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2019: Cloud, aerosol, and boundary layer structure across the northeast Pacific stratocumulus–cumulus transition as observed during CSET. Mon. Wea. Rev., 147, 20832103, https://doi.org/10.1175/MWR-D-18-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, W. H., and Coauthors, 2018: Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study. Atmos. Chem. Phys., 18, 14 49314 510, https://doi.org/10.5194/acp-18-14493-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, O. R., and Coauthors, 2004: A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America. J. Geophys. Res., 109, D23S08, https://doi.org/10.1029/2003JD003624.

    • Search Google Scholar
    • Export Citation
  • Crawford, J., and K. Pickering, 2014: DISCOVER-AQ: Advancing strategies for air quality observations in the next decade. EM Magazine, Vol. 64, No. 9, 47.

    • Search Google Scholar
    • Export Citation
  • Crawford, J., and Coauthors, 2016: Multi-perspective observations of nitrogen dioxide over the Denver area during DISCOVER-AQ: Insights for future monitoring. EM Magazine, Vol. 66, No. 8, https://pubs.awma.org/flip/EM-Aug-2016/crawford.pdf.

    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235, 460465, https://doi.org/10.1126/science.235.4787.460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fried, A., and Coauthors, 2016: Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study. J. Geophys. Res. Atmos., 121, 74307460, https://doi.org/10.1002/2015JD024477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., M. Barth, A. Detwiler, P. Klein, W.-C. Lee, P. Markowski, G. Mullendore, and D. Raymond, 2017: Requirements for In Situ and Remote Sensing Capabilities in Convective and Turbulent Environments (C-RITE) community workshop. Earth Observing Laboratory Final Rep., 46 pp., https://doi.org/10.5065/D6DB80KR.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2018: Recommendations for in situ and remote sensing capabilities in atmospheric convection and turbulence. Bull. Amer. Meteor. Soc., 99, 24632470, https://doi.org/10.1175/BAMS-D-17-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottschaldt, K.-D., and Coauthors, 2017: Trace gas composition in the Asian summer monsoon anticyclone: A case study based on aircraft observations and model simulations. Atmos. Chem. Phys., 17, 60916111, https://doi.org/10.5194/acp-17-6091-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, J. M., and Coauthors, 1996: Pacific Exploratory Mission-West A (PEM-West A): September–October 1991. J. Geophys. Res., 101, 16411653, https://doi.org/10.1029/95JD00622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., and Coauthors, 2016: On the origin of pronounced O3 gradients in the thunderstorm outflow region during DC3. J. Geophys. Res., 121, 66006637, https://doi.org/10.1002/2015JD024279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P. M., X.-M. Hu, and M. Xue, 2014: Impacts of mixing processes in nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, https://doi.org/10.1007/s10546-013-9864-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Konopka, P., and Coauthors, 2007: Contribution of mixing to upward transport across the tropical tropopause layer (TTL). Atmos. Chem. Phys., 7, 32853308, https://doi.org/10.5194/acp-7-3285-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Coauthors, 1988: Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment. Bull. Amer. Meteor. Soc., 69, 10581067, https://doi.org/10.1175/1520-0477(1988)069<1058:DACOMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, Z. J., L. L. Pan, E. L. Atlas, S. M. Chelpon, S. B. Honomichl, E. C. Apel, R. S. Hornbrook, and S. R. Hall, 2018: Use of airborne in situ VOC measurements to estimate transit time spectrum: An observation-based diagnostic of convective transport. Geophys. Res. Lett., 45, 13 15013 157, https://doi.org/10.1029/2018GL080424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeen, S. A., S. C. Liu, E.-Y. Hsie, X. Lin, J. D. Bradshaw, S. Smyth, G. L. Gregory, and D. R. Blake, 1996: Hydrocarbon ratios during PEM-WEST A: A model perspective. J. Geophys. Res., 101, 20872109, https://doi.org/10.1029/95JD02733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, S., and Coauthors, 2016: Impact of the Asian monsoon on the extratropical lower stratosphere: Trace gas observations during TACTS over Europe 2012. Atmos. Chem. Phys., 16, 10 57310 589, https://doi.org/10.5194/acp-16-10573-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, 2016: The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow. National Academies Press, 226 pp., https://doi.org/10.17226/23573.

    • Search Google Scholar
    • Export Citation
  • National Academies of Sciences, 2017: The future of boundary layer observing: A workshop. National Academies of Sciences, www.nationalacademies.org/our-work/the-future-of-boundary-layer-observing-a-workshop.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and Coauthors, 1996: Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27, 1991, during PEM-West A. J. Geophys. Res., 101, 18531871, https://doi.org/10.1029/95JD01374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. H. Lenschow, 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48, 21412158, https://doi.org/10.1175/1520-0469(1991)048<2141:SCFITM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett., 41, 77857790, https://doi.org/10.1002/2014GL061921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., and Coauthors, 2011: The canopy horizontal array turbulence study. Bull. Amer. Meteor. Soc., 92, 593611, https://doi.org/10.1175/2010BAMS2614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phoenix, D. B., C. R. Homeyer, M. C. Barth, and S. B. Trier, 2020: Mechanisms responsible for stratosphere-to-troposphere transport around a mesoscale convective system anvil. J. Geophys. Res. Atmos., 125, e2019JD032016, https://doi.org/10.1029/2019JD032016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pommrich, R., and Coauthors, 2014: Tropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the chemical Lagrangian model of the stratosphere (CLaMS). Geosci. Model Dev., 7, 28952916, https://doi.org/10.5194/gmd-7-2895-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sargent, M. R., J. B. Smith, D. S. Sayres, and J. G. Anderson, 2014: The roles of deep convection and extratropical mixing in the tropical tropopause layer: An in situ measurement perspective. J. Geophys. Res. Atmos., 119, 12 35512 371, https://doi.org/10.1002/2014JD022157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D., and T. Hall, 2002: Age of stratospheric air: Theory, observations, and models. Rev. Geophys., 40, 1010, https://doi.org/10.1029/2000RG000101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and S. T. Rao, 1999: The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J. Appl. Meteor., 38, 16741691, https://doi.org/10.1175/1520-0450(1999)038<1674:TROVMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2016: Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations. J. Geophys. Res. Atmos., 121, 19221934, https://doi.org/10.1002/2015JD024203.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 0 0
Full Text Views 713 0 0
PDF Downloads 564 0 0

Broadening Impact of Field Campaigns: Integrating Meteorological and Chemical Observations

View More View Less
  • 1 University of North Dakota, Grand Forks, North Dakota
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
  • | 3 University of Oklahoma, Norman, Oklahoma
  • | 4 NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

Historically, atmospheric field campaigns typically focused on either meteorology or chemistry with very limited complementary observations from the other discipline. In contrast, a growing number of researchers are working across subdisciplines to include meteorological and chemical measurements when planning field campaigns to increase the value of the collected datasets for subsequent analyses. Including select trace gas measurements should be intrinsic to certain dynamics campaigns, as they can add insights into dynamical processes. This paper highlights the mutual benefits of joint dynamics–chemistry campaigns by reporting on a small sample of examples across a broad range of meteorological scales to demonstrate the value of this strategy, with focus on the Deep Convective Clouds and Chemistry (DC3) campaign as a recent example. General recommendations are presented as well as specific recommendations of chemical species appropriate for a range of meteorological temporal and spatial scales.

CURRENT AFFILIATION: National Center for Atmospheric Research, Boulder, Colorado

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0216.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Gretchen Mullendore, gretchen@ucar.edu

Abstract

Historically, atmospheric field campaigns typically focused on either meteorology or chemistry with very limited complementary observations from the other discipline. In contrast, a growing number of researchers are working across subdisciplines to include meteorological and chemical measurements when planning field campaigns to increase the value of the collected datasets for subsequent analyses. Including select trace gas measurements should be intrinsic to certain dynamics campaigns, as they can add insights into dynamical processes. This paper highlights the mutual benefits of joint dynamics–chemistry campaigns by reporting on a small sample of examples across a broad range of meteorological scales to demonstrate the value of this strategy, with focus on the Deep Convective Clouds and Chemistry (DC3) campaign as a recent example. General recommendations are presented as well as specific recommendations of chemical species appropriate for a range of meteorological temporal and spatial scales.

CURRENT AFFILIATION: National Center for Atmospheric Research, Boulder, Colorado

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0216.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Gretchen Mullendore, gretchen@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 446.93 KB)
Save