• Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau Jr., 2010: An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res., 115, D18206, https://doi.org/10.1029/2009JD013411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., D. D. Fenn, and D. A. Moore, 1981: Spiral feature observed at top of rotating thunderstorm. Mon. Wea. Rev., 109, 11241129, https://doi.org/10.1175/1520-0493(1981)109<1124:SFOATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aránguiz, R., B. Saez, G. Gutiérrez, C. Oyarzo-Vera, E. Nuñez, C. Quiñones, R. Bobadilla, and M. T. Bull, 2020: Damage assessment of the May 31st, 2019, Talcahuano tornado, Chile. Int. J. Disaster Risk Reduct., 50, 101853, https://doi.org/10.1016/j.ijdrr.2020.101853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., R. Garreaud, and M. Falvey, 2009: Effect of the Andes Cordillera on precipitation from a midlatitude cold front. Mon. Wea. Rev., 137, 30923109, https://doi.org/10.1175/2009MWR2881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., J. C. Marin, and M. Jacques-Coper, 2020: A multiscale analysis of the tornadoes of 30–31 May 2019 in south-central Chile. Atmos. Res., 236, 104811, https://doi.org/10.1016/j.atmosres.2019.104811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastias-Curivil, C., 2019: Influencias de Los Procesos Geológicos En La Cosmovisión Mapuche, Entre Concepción Y Chiloé. Undergraduate thesis, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 376 pp., http://repositorio.uchile.cl/handle/2250/175020.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive. ERA Rep. Series 1, 16 pp., https://www.ecmwf.int/node/8173.

    • Search Google Scholar
    • Export Citation
  • Blier, W., and K. A. Batten, 1994: On the incidence of tornadoes in California. Wea. Forecasting, 9, 301315, https://doi.org/10.1175/1520-0434(1994)009<0301:OTIOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boisier, J. P., R. Rondanelli, R. D. Garreaud, and F. Muñoz, 2016: Anthropogenic and natural contributions to the southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett., 43, 413421, https://doi.org/10.1002/2015GL067265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and J. P. Monteverdi, 1991: An analysis of a mesocyclone–induced tornado occurrence in Northern California. Wea. Forecasting, 6, 1331, https://doi.org/10.1175/1520-0434(1991)006<0013:AAOAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546553, https://doi.org/10.1016/j.atmosres.2008.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and C. A. Doswell, 2001: Normalized damage from major tornadoes in the United States. Wea. Forecasting, 16, 168176, https://doi.org/10.1175/1520-0434(2001)016<0168:NDFMTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67-68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and Coauthors, 2019: A century of progress in severe convective storm research and forecasting. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, https://doi.org/10.1175/WAF1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., D. A. Barber, R. L. Thompson, R. Edwards, and J. Garner, 2014: Choosing a universal mean wind for supercell motion prediction. J. Operat. Meteor., 2, 115129, https://doi.org/10.15191/nwajom.2014.0211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., R. S. Schumacher, and J. T. Allen, 2018: Cold-season tornadoes: Climatological and meteorological insights. Wea. Forecasting, 33, 671691, https://doi.org/10.1175/WAF-D-17-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, M. R., 2009: The southern England tornadoes of 30 December 2006: Case study of a tornadic storm in a low CAPE, high shear environment. Atmos. Res., 93, 5065, https://doi.org/10.1016/j.atmosres.2008.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Amer. Meteor. Soc., Kananaskis Park, AB, Canada, 588-592.

    • Search Google Scholar
    • Export Citation
  • de Ovalle, A., 1703: An Historical Relation of the Kingdom of Chile. A. and J. Churchill, 154 pp.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esterheld, J. M., and D. J. Giuliano, 2008: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique. Electron. J. Severe Storms Meteor., 3 (2), http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/33.

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2009: Best practices for RGB compositing of multi-spectral imagery. User Services Division, 8 pp., http://oiswww.eumetsat.int/∼idds/html/doc/best_practices.pdf.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. Garreaud, 2007: Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. J. Hydrometeor., 8, 171193, https://doi.org/10.1175/JHM562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355368, https://doi.org/10.2151/jmsj1965.60.1_355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. C. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 522, https://doi.org/10.1016/S0031-0182(03)00269-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. G. Nicora, R. E. Bürgesser, and E. E. Ávila, 2014: Lightning in western Patagonia. J. Geophys. Res. Atmos ., 119, 44714485, https://doi.org/10.1002/2013JD021160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goliger, A. M., and R. V. Milford, 1998: A review of worldwide occurrence of tornadoes. J. Wind Eng. Ind. Aerodyn., 74–76, 111121, https://doi.org/10.1016/S0167-6105(98)00009-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guarriello, F., C. J. Nowotarski, and C. C. Epifanio, 2018: Effects of the low-level wind profile on outflow position and near-surface vertical vorticity in simulated supercell thunderstorms. J. Atmos. Sci., 75, 731753, https://doi.org/10.1175/JAS-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1985: Synoptic features associated with Los Angeles tornado occurrences. Bull. Amer. Meteor. Soc., 66, 657662, https://doi.org/10.1175/1520-0477-66.6.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., G. A. Mills, A. Watson, J. P. Monteverdi, and C. A. Doswell III, 2002: The cool-season tornadoes of California and southern Australia. Wea. Forecasting, 17, 705722, https://doi.org/10.1175/1520-0434(2002)017<0705:TCSTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Houze, R. A., Jr., 2014. Cloud Dynamics. Academic Press, 496 pp.

  • Hutchins, M. L., R. H. Holzworth, J. B. Brundell, and C. J. Rodger, 2012: Relative detection efficiency of the world wide lightning location network. Radio Sci ., 47, RS6005, https://doi.org/10.1029/2012RS005049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., and Coauthors, 2002: Mesoscale wind regimes in Chile at 30°S. J. Appl. Meteor., 41, 953970, https://doi.org/10.1175/1520-0450(2002)041<0953:MWRICA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus Jr., and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, https://doi.org/10.1175/2010MWR3201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, R., and Coauthors, 2015: Analysis of the horizontal two-dimensional near-surface structure of a winter tornadic vortex using high-resolution in situ wind and pressure measurements. J. Geophys. Res. Atmos., 120, 58795894, https://doi.org/10.1002/2014JD022878.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, J. R., M. D. Parker, K. D. Sherburn, and G. M. Lackmann, 2017: Rapid evolution of cool season, low-CAPE severe thunderstorm environments. Wea. Forecasting, 32, 763779, https://doi.org/10.1175/WAF-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirk, P. J., 2014: An updated tornado climatology for the UK: 1981–2010. Weather, 69, 171175, https://doi.org/10.1002/wea.2247.

  • Koronczay, D., and Coauthors, 2019: The source regions of whistlers. J. Geophys. Res. Space Phys., 124, 50825096, https://doi.org/10.1029/2019JA026559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds–Aerosols–Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, https://doi.org/10.5194/acp-8-6739-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marín, J. C., B. S. Barrett, and D. Pozo, 2020: The tornadoes of 30–31 May 2019 in south-central Chile: Sensitivity to topography and SST. Atmos. Res., 249, 105301, https://doi.org/10.1016/j.atmosres.2020.105301.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2011: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, 430 pp.

  • Moller, A. R., C. A. Doswell, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., and J. Quadros, 1994: Convective and rotational parameters associated with three tornado episodes in northern and central California. Wea. Forecasting, 9, 285300, https://doi.org/10.1175/1520-0434(1994)009<0285:CARPAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., C. A. Doswell, and G. S. Lipari, 2003: Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Wea. Forecasting, 18, 357370, https://doi.org/10.1175/1520-0434(2003)018<0357:SPTFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor ., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with Multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painting, D. J., 2003: AMDAR reference manual. World Meteorological Organization Tech. Rep. WMO- 958, 84 pp., https://library.wmo.int/doc_num.php?explnum_id=9026.

    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009: The impact of lightning data assimilation on a winter storm simulation over the North Pacific ocean. Mon. Wea. Rev., 137, 31773195, https://doi.org/10.1175/2009MWR2765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peyraud, L., 2013: Analysis of the 18 July 2005 tornadic supercell over the Lake Geneva region. Wea. Forecasting, 28, 15241551, https://doi.org/10.1175/WAF-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and W. Blier, 1986: A further study of comma cloud development in the eastern Pacific. Mon. Wea. Rev., 114, 16961708, https://doi.org/10.1175/1520-0493(1986)114<1696:AFSOCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, S. F., P. V. Hobbs, J. D. Locatelli, and M. T. Stoelinga, 2004: A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upper-level jet streaks. Wea. Forecasting, 19, 301309, https://doi.org/10.1175/1520-0434(2004)019<0301:AYCRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Servicio Meteorologico de la Armada de Chile, 2010: Evidencias de fenómenos del tipo Tornado en las costas de la VIII Región Del Biobío Y el Sur de Chile. Servicio Meteorologico de la Armada de Chile, http://meteoarmada.directemar.cl/prontus_meteo/site/artic/20101214/pags/20101214135557.html.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2019: The development of severe vortices within simulated high-shear, low-CAPE convection. Mon. Wea. Rev., 147, 21892216, https://doi.org/10.1175/MWR-D-18-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., M. D. Parker, J. R. King, and G. M. Lackmann, 2016: Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Wea. Forecasting, 31, 1899–1927, https://doi.org/10.1175/WAF-D-16-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., 2011: An increase in the number of tornado reports in Brazil. Wea. Climate Soc ., 3, 209217, https://doi.org/10.1175/2011WCAS1095.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 162 pp., https://doi.org/10.5065/1DFH-6P97.

    • Search Google Scholar
    • Export Citation
  • Soliño, A., and M. A. Schwarzkopf, 1982: Ocurrencia de Tornados Sobre El Sector Sur Del Continente Americano. Segundo Congresso Brasileiro de Meteorologia, Anais, Pelotas.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., H. E. Brooks, B. Czernecki, P. Szuster, and K. Fortuniak, 2018: Climatological aspects of convective parameters over Europe: A comparison of ERA-interim and sounding data. J. Climate, 31, 42814308, https://doi.org/10.1175/JCLI-D-17-0596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsonevsky, I., C. A. Doswell, and H. E. Brooks, 2018: Early warnings of severe convection using the ECMWF extreme forecast index. Wea. Forecasting, 33, 857871, https://doi.org/10.1175/WAF-D-18-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turman, B. N., and R. J. Tettelbach, 1980: Synoptic-scale satellite lightning observations in conjunction with tornadoes. Mon. Wea. Rev., 108, 18781882, https://doi.org/10.1175/1520-0493(1980)108<1878:SSSLOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicencio, J., A. Reyes, S. Sánchez, R. Padilla, J. Crespo, and D. Campos, 2019: Informe Especial: Tornados en la Región del Biobío. Dirección Meteorológica de Chile, 39 pp., http://archivos.meteochile.gob.cl/portaldmc/meteochile/documentos/DMC-InfoEspecial_TornadosBiobio_v5black.pdf.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, https://doi.org/10.1175/BAMS-D-12-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesolek, E., and P. Mahieu, 2011: The F4 tornado of August 3, 2008, in northern France: Case study of a tornadic storm in a low CAPE environment. Atmos. Res., 100, 649656, https://doi.org/10.1016/j.atmosres.2010.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 9901006, https://doi.org/10.1175/2011JAS3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 36
PDF Downloads 22 22 22

The Chilean Tornado Outbreak of May 2019: Synoptic, Mesoscale, and Historical Contexts

View More View Less
  • 1 Dirección Meteorológica de Chile, and Departamento de Geofísica, Universidad de Chile, Santiago, Chile
  • | 2 Departamento de Geofísica, Universidad de Chile, and Center for Climate and Resilience Research, Santiago, Chile
  • | 3 Dirección Meteorológica de Chile, and Departamento de Geofísica, Universidad de Chile, Santiago, Chile
  • | 4 Center for Climate and Resilience Research, Santiago, and Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
  • | 5 Departamento de Geofísica, Universidad de Chile, and Center for Climate and Resilience Research, Santiago, Chile
  • | 6 Dirección Meteorológica de Chile, Santiago, Chile
  • | 7 CEILAP, UNIDEF (MINDEF-CONICET), Buenos Aires, Argentina
Restricted access

Abstract

In late May 2019, at least seven tornadoes were reported within a 24-h period in southern Chile (western South America, 36°–38°S), including EF1 and EF2 events causing substantial damage to infrastructure, dozens of injuries, and one fatality. Despite anecdotal evidence and chronicles of similar historical events, the threat from tornadoes in Chile was regarded with skepticism until the 2019 outbreak. Herein, we describe the synoptic-scale features instrumental in the development of these tornadic storms, including an extended southwest–northeast trough along the South Pacific, with a large postfrontal instability area. Tornadic storms appear to be embedded in a modestly unstable environment (positive convective available potential energy but less than 1,000 J kg−1) and strong low- and midlevel wind shear, with high near-surface storm-relative helicity values (close to −200 m2 s−2), clearly differing from the Great Plains tornadoes in North America (with highly unstable environments) but resembling cold-season tornadoes previously observed in the midlatitudes of North America, Australia, and Europe. Reanalyzing rainfall and lightning data from the last 10 years, we found that tornadic storms in our region occur associated with locally extreme values of both CAPE and low-level wind shear, where a combination of the two in a low-level vorticity generation parameter appears as a simple first-order discriminant between tornadic and nontornadic environments. Future research should thoroughly examine historical events worldwide to assemble a database of high-shear, low-CAPE midlatitude storms and help improve our understanding of these storms’ underlying physics.

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0218.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roberto Rondanelli, ronda@dgf.uchile.cl

Abstract

In late May 2019, at least seven tornadoes were reported within a 24-h period in southern Chile (western South America, 36°–38°S), including EF1 and EF2 events causing substantial damage to infrastructure, dozens of injuries, and one fatality. Despite anecdotal evidence and chronicles of similar historical events, the threat from tornadoes in Chile was regarded with skepticism until the 2019 outbreak. Herein, we describe the synoptic-scale features instrumental in the development of these tornadic storms, including an extended southwest–northeast trough along the South Pacific, with a large postfrontal instability area. Tornadic storms appear to be embedded in a modestly unstable environment (positive convective available potential energy but less than 1,000 J kg−1) and strong low- and midlevel wind shear, with high near-surface storm-relative helicity values (close to −200 m2 s−2), clearly differing from the Great Plains tornadoes in North America (with highly unstable environments) but resembling cold-season tornadoes previously observed in the midlatitudes of North America, Australia, and Europe. Reanalyzing rainfall and lightning data from the last 10 years, we found that tornadic storms in our region occur associated with locally extreme values of both CAPE and low-level wind shear, where a combination of the two in a low-level vorticity generation parameter appears as a simple first-order discriminant between tornadic and nontornadic environments. Future research should thoroughly examine historical events worldwide to assemble a database of high-shear, low-CAPE midlatitude storms and help improve our understanding of these storms’ underlying physics.

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0218.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roberto Rondanelli, ronda@dgf.uchile.cl

Supplementary Materials

    • Supplemental Materials (PDF 6.33 MB)
Save