• Alexandrov, M. D., A. A. Lacis, B. E. Carlson, and B. Cairns, 2002a: Remote sensing of atmospheric aerosols and trace gases by means of multifilter rotating shadowband radiometer. Part I: Retrieval algorithm. J. Atmos. Sci., 59, 524543, https://doi.org/10.1175/1520-0469(2002)059<0524:RSOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., A. A. Lacis, B. E. Carlson, and B. Cairns, 2002b: Remote sensing of atmospheric aerosols and trace gases by means of multifilter rotating shadowband radiometer. Part II: Climatological applications. J. Atmos. Sci., 59, 544566, https://doi.org/10.1175/1520-0469(2002)059<0544:RSOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and Coauthors, 2009: Columnar water vapor retrievals from multifilter rotating shadowband radiometer data. J. Geophys. Res., 114, D02306, https://doi.org/10.1029/2008JD010543.

    • Search Google Scholar
    • Export Citation
  • ARM, 2019: Multifilter Rotating Shadowband Radiometer (MFRSR): Southern Great Plains (SGP). ARM Data Center, accessed 26 August 2019, https://doi.org/10.5439/1023898.

    • Crossref
    • Export Citation
  • Barnard, J. C., C. N. Long, E. I. Kassianov, S. A. McFarlane, J. M. Comstock, M. Freer, and G. M. McFarquhar, 2008: Development and evaluation of a simple algorithm to find cloud optical depth with emphasis on thin ice clouds. Open Atmos. Sci. J., 2, 4655, https://doi.org/10.2174/1874282300802010046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bar-Or, R. Z., I. Koren, and O. Altaratz, 2010: Estimating cloud field coverage using morphological analysis. Environ. Res. Lett., 5, 014022, https://doi.org/10.1088/1748-9326/5/1/014022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berk, A., and Coauthors, 2006: MODTRAN5: 2006 update. Proc. SPIE, 6233, https://doi.org/10.1117/12.665077.

  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: Observations and microphysical effects. Quart. J. Roy. Meteor. Soc., 140, 583594, https://doi.org/10.1002/qj.2140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, https://doi.org/10.1029/JD095iD10p16601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., A. Marshak, Y. Knyazikhin, W. J. Wiscombe, H. W. Barker, J. C. Barnard, and Y. Luo, 2006: Remote sensing of cloud properties using ground-based measurements of zenith radiance. J. Geophys. Res., 111, D16201, https://doi.org/10.1029/2005JD006843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., C. Huang, A. Marshak, I. Slutsker, D. M. Giles, B. N. Holben, Y. Knyazikhin, and W. J. Wiscombe, 2010: Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res., 115, D14202, https://doi.org/10.1029/2009JD013121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., and Coauthors, 2012: Cloud droplet size and liquid water path retrievals from zenith radiance measurements: Examples from the atmospheric radiation measurement program and the aerosol robotic network. Atmos. Chem. Phys., 12, 10 31310 329, https://doi.org/10.5194/acp-12-10313-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105, 20 67320 696, https://doi.org/10.1029/2000JD900282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., R. D. Cess, and G. L. Potter, 2016: The atmospheric radiation measurement program: Prelude. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0029.1.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., A. McComiskey, T. Yamaguchi, J. S. Johnson, K. S. Carslaw, and K. S. Schmidt, 2016: New approaches to quantifying aerosol influence on the cloud radiative effect. Proc. Natl. Acad. Sci. USA, 113, 58125819, https://doi.org/10.1073/pnas.1514035112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, M. D., J. C. Chiu, R. J. Hogan, and G. Feingold, 2014: A novel ensemble method for retrieving properties of warm cloud in 3-D using ground-based scanning radar and zenith radiances. J. Geophys. Res. Atmos., 119, 10 91210 930, https://doi.org/10.1002/2014JD021742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, M. D., J. C. Chiu, R. J. Hogan, G. Feingold, E. Eloranta, E. J. O’Connor, and M. P. Cadeddu, 2015: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances. Atmos. Meas. Tech., 8, 26632683, https://doi.org/10.5194/amt-8-2663-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ge, J. M., J. Su, T. P. Ackerman, Q. Fu, J. P. Huang, and J. S. Shi, 2010: Dust aerosol optical properties retrieval and radiative forcing over Northwestern China during the 2008 China-US joint field experiment. J. Geophys. Res., 115, D00K12, https://doi.org/10.1029/2009JD013263.

    • Search Google Scholar
    • Export Citation
  • Giles, D. M., and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169209, https://doi.org/10.5194/amt-12-169-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gristey, J. J., G. Feingold, I. B. Glenn, K. S. Schmidt, and H. Chen, 2020: Surface solar irradiance in continental shallow cumulus fields: Observations and large eddy simulation. J. Atmos. Sci., 77, 10651080, https://doi.org/10.1175/JAS-D-19-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gronemeier, T., F. Kanani-Sühring, and S. Raasch, 2017: Do shallow cumulus clouds have the potential to trigger secondary circulations via shading? Bound.-Layer Meteor., 162, 143169, https://doi.org/10.1007/s10546-016-0180-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., and Coauthors, 2020: The Large-Eddy Simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation (LASSO) activity for continental shallow convection. Bull. Amer. Meteor. Soc., 101, E462E479, https://doi.org/10.1175/BAMS-D-19-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., and J. Michalsky, 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt., 33, 51265132, https://doi.org/10.1364/AO.33.005126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadow-band radiometer: An instrument for optical depth and radiation measurements. Appl. Opt., 33, 51185125, https://doi.org/10.1364/AO.33.005118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET: A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Jakub, F., and B. Mayer, 2017: The role of 1-D and 3-D radiative heating in the organization of shallow cumulus convection and the formation of cloud streets. Atmos. Chem. Phys., 17, 13 31713 327, https://doi.org/10.5194/acp-17-13317-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., J. C. Barnard, and T. P. Ackerman, 2005: Retrieval of aerosol microphysical properties using surface Multifilter Rotating Shadowband Radiometer (MFRSR) data: Modeling and observations. J. Geophys. Res., 110, D09201, https://doi.org/10.1029/2004JD005337.

    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., C. J. Flynn, T. P. Ackerman, and J. C. Barnard, 2007: Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003. Atmos. Chem. Phys., 7, 33413351, https://doi.org/10.5194/acp-7-3341-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., J. C. Barnard, L. K. Berg, C. Flynn, and C. N. Long, 2011a: Sky cover from MFRSR observations. Atmos. Meas. Tech., 4, 14631470, https://doi.org/10.5194/amt-4-1463-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., J. C. Barnard, L. K. Berg, C. N. Long, and C. Flynn, 2011b: Shortwave spectral radiative forcing of cumulus clouds from surface observations. Geophys. Res. Lett., 38, L07801, https://doi.org/10.1029/2010GL046282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., J. C. Barnard, C. Flynn, L. Riihimaki, J. Michalsky, and G. Hodges, 2014: Areal-averaged spectral surface albedo from ground-based transmission data alone: Toward an operational retrieval. Atmosphere, 5, 597621, https://doi.org/10.3390/atmos5030597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., J. C. Barnard, C. Flynn, L. Riihimaki, L. K. Berg, and D. A. Rutan, 2017: Areal-averaged spectral surface albedo in an Atlantic coastal area: Estimation from ground-based transmission. Atmosphere, 8, 123, https://doi.org/10.3390/atmos8070123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and A. Hall, 2015: Emergent constraints for cloud feedbacks. Curr. Climate Change Rep., 1, 276287, https://doi.org/10.1007/s40641-015-0027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., and Coauthors, 2020: The ARM radar network: At the leading edge of cloud and precipitation observations. Bull. Amer. Meteor. Soc., 101, E588E607, https://doi.org/10.1175/BAMS-D-18-0288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudic, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, https://doi.org/10.1029/2007GL029253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., G. Feingold, H. Jiang, and O. Altaratz, 2009: Aerosol effects on the inter-cloud region of a small cumulus cloud field. Geophys. Res. Lett., 36, L14805, https://doi.org/10.1029/2009GL037424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeBlanc, S. E., P. Pilewskie, K. S. Schmidt, and O. Coddington, 2015: A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra. Atmos. Meas. Tech., 8, 13611383, https://doi.org/10.5194/amt-8-1361-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. J. Geophys. Res., 113, D15201, https://doi.org/10.1029/2007JD009354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lubin, D., and A. M. Vogelmann, 2011: The influence of mixed-phase clouds on surface shortwave irradiance during the Arctic spring. J. Geophys. Res., 116, D00T05, https://doi.org/10.1029/2011JD015761.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., S. Avey, S. Cooper, M. Lebsock, S. Tanelli, and G. Dobrowalski, 2016: Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data. J. Geophys. Res. Atmos., 121, 40084033, https://doi.org/10.1002/2015JD023681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., Y. Knyazikhin, K. D. Evans, and W. J. Wiscombe, 2004: The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 19111925, https://doi.org/10.1175/1520-0469(2004)061<1911:TRVNPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, P. J., K. S. Schmidt, P. Pilewskie, A. S. Kittelman, and D. E. Wolfe, 2011: A spectral method for retrieving cloud optical thickness and effective radius from surface-based transmittance measurements. Atmos. Chem. Phys., 11, 72357252, https://doi.org/10.5194/acp-11-7235-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComiskey, A., and R. A. Ferrare, 2016: Aerosol physical and optical properties in the ARM Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0028.1.

    • Search Google Scholar
    • Export Citation
  • McComiskey, A., S. E. Schwartz, B. Schmid, H. Guan, E. R. Lewis, P. Ricchiazzi, and J. A. Ogren, 2008: Direct aerosol forcing: Calculation from observables and sensitivities to inputs. J. Geophys. Res., 113, D09202, https://doi.org/10.1029/2007JD009170.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J. J., and C. N. Long, 2016: ARM solar and infrared broadband and filter radiometry. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalsky, J. J., J. C. Liljegren, and L. C. Harrison, 1995: A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site. J. Geophys. Res., 100, 25 99526 003, https://doi.org/10.1029/95JD02706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michalsky, J. J., F. Denn, C. Flynn, G. Hodges, P. Kiedron, A. Koontz, J. Schlemmer, and S. E. Schwartz, 2010: Climatology of aerosol optical depth in north central Oklahoma: 1992–2008. J. Geophys. Res., 115, D07203, https://doi.org/10.1029/2009JD012197.

    • Search Google Scholar
    • Export Citation
  • Min, Q., and L. C. Harrison, 1996: Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site. Geophys. Res. Lett., 23, 16411644, https://doi.org/10.1029/96GL01488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., T. Wang, C. N. Long, and M. Duan, 2008: Estimating fractional sky cover from spectral measurements. J. Geophys. Res., 113, D20208, https://doi.org/10.1029/2008JD010278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., and D. D. Turner, 2016: Spectral radiation measurements and analysis in the ARM Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0027.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., M. J. Iacono, R. Pincus, H. W. Barker, L. Oreopoulos, and D. L. Mitchell, 2016: Contributions of the ARM program to radiative transfer modeling for climate and weather applications. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C., S. Bony, J.-L. Dufresne, and H. Chepfer, 2012: The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012GL053421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Nino. Nat. Commun., 8, 15799, https://doi.org/10.1038/ncomms15799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., and A. P. Khain, 2018: Theoretical analysis of the entrainment–mixing process at cloud boundaries. Part I: Droplet size distributions and humidity within the interface zone. J. Atmos. Sci., 75, 20492064, https://doi.org/10.1175/JAS-D-17-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, K. S., V. Venema, F. Di Giuseppe, R. Scheirer, M. Wendisch, and P. Pilewskie, 2007: Reproducing cloud microphysical and irradiance measurements using three 3D cloud generators. Quart. J. Roy. Meteor. Soc., 133, 765780, https://doi.org/10.1002/qj.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, K. S., G. Feingold, P. Pilewskie, H. Jiang, O. Coddington, and M. Wendisch, 2009: Irradiance in polluted cumulus fields: Measured and modeled cloud-aerosol effects. Geophys. Res. Lett., 36, L07804, https://doi.org/10.1029/2008GL036848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. C., and D. Lubin, 2014: Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes. J. Geophys. Res. Atmos., 119, 67026723, https://doi.org/10.1002/2013JD021132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 14191427, https://doi.org/10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci., 5, 691696, https://doi.org/10.1038/ngeo1580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., 2016: Original ARM concept and launch. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., E. J. Mlawer, and H. E. Revercomb, 2016: Water vapor observations in the ARM Program. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uin, J., and Coauthors, 2019: Atmospheric Radiation Measurement (ARM) Aerosol Observing Systems (AOS) for surface-based in-situ atmospheric aerosol and trace gas measurements. J. Atmos. Oceanic Technol., 36, 24292447, https://doi.org/10.1175/JTECH-D-19-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varnai, T., and A. Marshak, 2011: Global CALIPSO observations of aerosol changes near clouds. IEEE Geosci. Remote Sens. Lett., 8, 1923, https://doi.org/10.1109/LGRS.2010.2049982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, https://doi.org/10.1175/BAMS-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, A., R. C. Scott, M. P. Cadeddu, V. Ghate, and D. Lubin, 2018: Cloud optical properties over West Antarctica from shortwave spectroradiometer measurements during AWARE. J. Geophys. Res. Atmos., 123, 95599570, https://doi.org/10.1029/2018JD028347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., and Coauthors, 2016: Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign. Atmos. Res., 182, 294301, https://doi.org/10.1016/j.atmosres.2016.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., A. Marshak, and G. Wen, 2019: Cloud edge properties measured by the ARM shortwave spectrometer over ocean and land. J. Geophys. Res. Atmos., 124, 87078721, https://doi.org/10.1029/2019JD030622.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 15 0 0
Full Text Views 1356 116 5
PDF Downloads 1130 60 6

The Shortwave Spectral Radiometer for Atmospheric Science: Capabilities and Applications from the ARM User Facility

View More View Less
  • 1 CIRES, University of Colorado Boulder, and NOAA Global Monitoring Laboratory, Boulder, Colorado
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 3 Brookhaven National Laboratory, Upton, New York
  • | 4 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 5 ESCER Centre, Department of Earth and Atmospheric Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada
  • | 6 Colorado State University, Fort Collins, Colorado
  • | 7 NOAA Chemical Sciences Laboratory, Boulder, Colorado
  • | 8 Lawrence Berkeley National Laboratory, Berkeley, California
  • | 9 CIRES, University of Colorado Boulder, and NOAA Chemical Sciences Laboratory, Boulder, Colorado
  • | 10 CIRES, University of Colorado Boulder, and NOAA Global Monitoring Laboratory, Boulder, Colorado
  • | 11 Pacific Northwest National Laboratory, Richland, Washington
  • | 12 Bay Area Environmental Research Institute, NASA Ames Research Center, Moffett Field, California
  • | 13 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 14 NOAA Global Monitoring Laboratory, Boulder, Colorado
  • | 15 University of Colorado Boulder, Boulder, Colorado
  • | 16 NASA Langley Research Center, Hampton, Virginia
  • | 17 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 18 Brookhaven National Laboratory, Upton, New York
  • | 19 NASA Langley Research Center, Hampton, Virginia
Restricted access

Abstract

Industry advances have greatly reduced the cost and size of ground-based shortwave (SW) sensors for the ultraviolet, visible, and near-infrared spectral ranges that make up the solar spectrum, while simultaneously increasing their ruggedness, reliability, and calibration accuracy needed for outdoor operation. These sensors and collocated meteorological equipment are an important part of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) User Facility, which has supported parallel integrated measurements of atmospheric and surface properties for more than two decades at fixed and mobile sites around the world. The versatile capability of these ground-based measurements includes 1) rich spectral information required for retrieving cloud and aerosol microphysical properties, such as cloud phase, cloud particle size, and aerosol size distributions, and 2) high temporal resolution needed for capturing fast evolution of cloud microphysical properties in response to rapid changes in meteorological conditions. Here we describe examples of how ARM’s spectral radiation measurements are being used to improve understanding of the complex processes governing microphysical, optical, and radiative properties of clouds and aerosol.

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0227.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Laura D. Riihimaki, laura.riihimaki@noaa.gov

Abstract

Industry advances have greatly reduced the cost and size of ground-based shortwave (SW) sensors for the ultraviolet, visible, and near-infrared spectral ranges that make up the solar spectrum, while simultaneously increasing their ruggedness, reliability, and calibration accuracy needed for outdoor operation. These sensors and collocated meteorological equipment are an important part of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) User Facility, which has supported parallel integrated measurements of atmospheric and surface properties for more than two decades at fixed and mobile sites around the world. The versatile capability of these ground-based measurements includes 1) rich spectral information required for retrieving cloud and aerosol microphysical properties, such as cloud phase, cloud particle size, and aerosol size distributions, and 2) high temporal resolution needed for capturing fast evolution of cloud microphysical properties in response to rapid changes in meteorological conditions. Here we describe examples of how ARM’s spectral radiation measurements are being used to improve understanding of the complex processes governing microphysical, optical, and radiative properties of clouds and aerosol.

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0227.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Laura D. Riihimaki, laura.riihimaki@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.68 MB)
Save