• Abbas, A. E., 2018: Foundations of Multiattribute Utility. Cambridge University Press, 480 pp.

  • Aguilar, J. A., and A. Dawdy, 2000. Scope vs. detail: The teams of the Concept Design Center. 2000IEEE Aerospace Conf., Big Sky, MT, IEEE, 465–481, https://doi.org/10.1109/AERO.2000.879431.

    • Search Google Scholar
    • Export Citation
  • Aguilar, J. A., A. Dawdy, and G. W. Law, 1998: The Aerospace Corporation’s Concept Design Center. INCOSE Int. Symp., 8 (1), 776782, https://doi.org/10.1002/j.2334-5837.1998.tb00110.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2019: Developing priority observational requirements from space using multi-attribute utility theory. Bull. Amer. Meteor. Soc., 100, 17531774, https://doi.org/10.1175/BAMS-D-18-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawley, E., B. Cameron, and D. Selva, 2015: System Architecture: Strategy and Product Development for Complex Systems, Prentice Hall Press, 480 pp.

    • Search Google Scholar
    • Export Citation
  • Davis, G. K., 2007: History of the NOAA satellite program. J. Appl. Remote Sens., 1, 012504, https://doi.org/10.1117/1.2642347.

  • Di Pietro, D. A., 2015: A systems engineering approach to architecture development. INCOSE Int. Symp., 25 (1), 619633, https://doi.org/10.1002/j.2334-5837.2015.00085.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endemann, M., 2017: The ADM-Aeolus Mission. Int. Conf. on Space Optics—ICSO 2006, Noordwijk, Netherlands, International Society for Optics and Photonics, 1056701, https://doi.org/10.1117/12.2308145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib-Agahi, H., 2010: NASA Instrument Cost Model (NICM) Version IV. NASA JPL 982-0000 Rev. 4.

  • Habib-Agahi, H., J. Mrozinski, and G. Fox, 2011: NASA instrument cost/schedule model. NASA JPL, 19 pp., https://trs.jpl.nasa.gov/bitstream/handle/2014/44774/10-4931_A1b.pdf?isAllowed=y&sequence=1.

    • Search Google Scholar
    • Export Citation
  • Hall, R. C., 2001: A history of the military polar orbiting meteorological satellite program. National Reconnaissance Office, 56 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a598477.pdf.

    • Search Google Scholar
    • Export Citation
  • Hovis, F., M. Albert, F. Fitzpatrick, K. Puffenburger, T. Schum, D. J. J. Rudd, and S. Litvinovitch, 2017: Recent progress on UV lasers for airborne and space-based applications. 2017 IEEE International Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, IEEE 4216–4219, https://doi.org/10.1109/IGARSS.2017.8127932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IRT, 2012: NOAA NESDIS Independent Review Team Report 07/20/2012. Space Policy Online, 51 pp, https://www.nesdis.noaa.gov/sites/default/files/asset/document/NESDIS%20Update%20IRT%20Final%20Report.pdf.

    • Search Google Scholar
    • Export Citation
  • ISO, 2011: ISO/IEC/IEEE 42010.WD4 software systems and enterprise—Architecture description. International Standards Organization, 37 pp, https://www.iso.org/standard/50508.html.

    • Search Google Scholar
    • Export Citation
  • ISO, 2018: ISO/IEC/IEEE FDIS 42020 Enterprise, systems, and software—Architecture processes. International Standards Organization, 110 pp, https://www.iso.org/standard/68982.html.

    • Search Google Scholar
    • Export Citation
  • Källén, E., 2018: Scientific motivation for ADM/Aeolus mission. EPJ Web Conf .,176, 02008, https://doi.org/10.1051/epjconf/201817602008.

  • Keeney, R. L., 1996: Value-Focused Thinking: A Path to Creative Decisionmaking .Harvard University Press, 432 pp.

  • Lautenbacher, C. C., 2006: The global earth observation system of systems: Science serving society. Space Policy, 22, 811, https://doi.org/10.1016/j.spacepol.2005.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahr, E., and G. Richardson, 2003: Development of the Small Satellite Cost Model (SSCM) edition 2002. IEEE Aerospace Conf., Big Sky, MT, IEEE, 8-3831–8-3841, https://doi.org/10.1109/AERO.2003.1235567.

    • Search Google Scholar
    • Export Citation
  • Maier, M. W., 2009: The Art of Systems Architecting. 3rd ed. CRC Press, 472 pp.

  • Maier, M. W., 2018: Is there a case for radical change to weather satellite constellations? 2018 IEEE Aerospace Conf., Big Sky, MT, IEEE, 14 pp., https://doi.org/10.1109/AERO.2018.8396559.

    • Search Google Scholar
    • Export Citation
  • Maier, M. W., and E. B. Wendoloski, 2020: Value uncertainty analysis in architecture and trade studies. IEEE Syst. J., 14, 54175428, https://doi.org/10.1109/JSYST.2020.2976717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maier, M. W., E. B. Wendoloski, D. Houston, and J. Wilson, 2018: Launch and production schedule modeling for sustained earth observation constellations. 2018IEEE Aerospace Conf ., Big Sky, MT, IEEE, 16 pp., https://doi.org/10.1109/AERO.2018.8396561.

    • Search Google Scholar
    • Export Citation
  • NASA, 2018: GOES-R Series frequently asked questions (FAQS). Accessed 1 October 18, www.goes-r.gov/resources/faqs.html.

  • Nguyen, P., and B. Kwok, 2010: Unmanned spacecraft cost model. U.S. Air Force Space and Missile Systems Center (SMC/FMC) 2430 (1994): 90245-4687.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2018: Our satellites: Flyout charts. Accessed 1 October 2018, www.nesdis.noaa.gov/content/our-satellites.

  • NOAA, 2019: Future NOAA Satellite Architecture. Accessed 24 December 2019, www.space.commerce.gov/business-with-noaa/future-noaa-satellite-architecture/.

    • Search Google Scholar
    • Export Citation
  • NRC, 2008: Pre-Milestone A and Early-Phase Systems Engineering: A Retrospective Review and Benefits for Future Air Force Systems Acquisition. National Academies Press, 150 pp., https://doi.org/10.17226/12065.

    • Search Google Scholar
    • Export Citation
  • Rao, P. K., S. J. Holmes, R. K. Anderson, J. S. Winston, and P. E. Lehr, Eds., 1990: Weather Satellites: Systems, Data, and Environmental Applications. Amer. Meteor. Soc., 473 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez, M., D. Selva, B. Cameron, E. Crawley, A. Seas, and B. Seery, 2013: Exploring the architectural trade space of NASAs space communication and navigation program. 2013IEEE Aerospace Conf ., Big Sky, MT, IEEE, 16 pp., https://doi.org/10.1109/AERO.2013.6497173.

    • Search Google Scholar
    • Export Citation
  • Trishchenko, A. P., L. Garand, L. D. Trichtchenko, and L. V. Nikitina, 2016: Multiple-apogee highly elliptical orbits for continuous meteorological imaging of polar regions: Challenging the classical 12-h Molniya orbit concept. Bull. Amer. Meteor. Soc., 97, 1924, https://doi.org/10.1175/BAMS-D-14-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, P., 1992: FRISK-Formal risk assessment of system cost estimates. Aerospace Design Conf ., Irvine, CA, AIAA, AIAA-92-1054, https://doi.org/10.2514/6.1992-1054.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 35
PDF Downloads 35 35 34

Architecting the Future of Weather Satellites

View More View Less
  • 1 The Aerospace Corporation, Chantilly, Virginia
  • | 2 NOAA/NESDIS/OSAAP, Silver Spring, Maryland
  • | 3 NASA Headquarters, Washington, D.C.
  • | 4 University Corporation for Atmospheric Research, Boulder, Colorado
  • | 5 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 6 NASA/GSFC, Greenbelt, Maryland
  • | 7 MIT Lincoln Laboratory, Lexington, Massachusetts
  • | 8 JHU/APL, Laurel, Maryland
Restricted access

Abstract

Between 2014 and 2018, the NOAA Office of Systems Architecture and Advanced Planning (OSAAP) conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan the long-term future of the NOAA constellation of operational environmental satellites. This constellation of satellites (which may include space capabilities acquired in lieu of U.S. government satellites) will follow the current GOES-R and JPSS satellite programs, beginning about 2030. This was an opportunity to design a modern architecture with no preconceived notions regarding instruments, platforms, orbits, etc., but driven by user needs, new technology, and exploiting emerging space business models. In this paper we describe how the study was structured, review major results, show how observation priorities and estimated costs drove next-generation choices, and discuss important challenges for implementing the next generation of U.S. civil environmental remote sensing satellites.

Emeritus

©2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Mark W. Maier, mark.w.maier@aero.org

Abstract

Between 2014 and 2018, the NOAA Office of Systems Architecture and Advanced Planning (OSAAP) conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan the long-term future of the NOAA constellation of operational environmental satellites. This constellation of satellites (which may include space capabilities acquired in lieu of U.S. government satellites) will follow the current GOES-R and JPSS satellite programs, beginning about 2030. This was an opportunity to design a modern architecture with no preconceived notions regarding instruments, platforms, orbits, etc., but driven by user needs, new technology, and exploiting emerging space business models. In this paper we describe how the study was structured, review major results, show how observation priorities and estimated costs drove next-generation choices, and discuss important challenges for implementing the next generation of U.S. civil environmental remote sensing satellites.

Emeritus

©2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Mark W. Maier, mark.w.maier@aero.org
Save