• Bringi, V., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P.-L., P.-F. Lin, B. J.-D. Jou, and J. Zhang, 2009: An application of reflectivity climatology in constructing radar hybrid scans over complex terrains. J. Atmos. Oceanic Technol., 26, 13151327, https://doi.org/10.1175/2009JTECHA1162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 19731993, https://doi.org/10.1175/2009JTECHA1236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, I.-H., J.-S. Hong, Y.-T. Tsai, and C.-T. Fong, 2020: Improving afternoon thunderstorm prediction over Taiwan through 3DVar-based radar and surface data assimilation. Wea. Forecasting, 35, 26032620, https://doi.org/10.1175/WAF-D-20-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J.-Y., W.-Y. Chang, and T.-C. Chen, 2017: Comparison of quantitative precipitation estimation in northern Taiwan using S- and C-band dual-polarimetric radars (in Chinese). Atmosphere, 45, 5780, https://doi.org/10.3966/025400022017034501004.

    • Search Google Scholar
    • Export Citation
  • Ching, J., H.-J. Liao, and J.-Y. Lee, 2011: Predicting rainfall-induced landslide potential along a mountain road in Taiwan. Geotechnique, 61, 153166, https://doi.org/10.1680/geot.8.P.119.3740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S., and Coauthors, 2019: A prototype quantitative precipitation estimation algorithm for operational S-Band polarimetric radar utilizing specific attenuation and specific differential phase. Part II: Performance verification and case study analysis. J. Hydrometeor., 20, 9991014, https://doi.org/10.1175/JHM-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germann, U., G. Galli, M. Boscacci, and M. Bolliger, 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, https://doi.org/10.1256/qj.05.190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and A. V. Ryzhkov, 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452462, https://doi.org/10.1175/2008JAMC1753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and Coauthors, 2017: The FLASH project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., 98, 361372, https://doi.org/10.1175/BAMS-D-15-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IFRC, 2018: Leaving no one behind: World Disasters Report 2018. International Federation of Red Cross and Red Crescent Societies, 20 pp., https://media.ifrc.org/ifrc/wp-content/uploads/sites/5/2018/10/B-WDR-2018-EXECSUM-EN.pdf.

    • Search Google Scholar
    • Export Citation
  • Jou, B.-J. D., Y.-C. Kao, R.-G. R. Hsiu, C.-J. U. Jung, J. R. Lee, and H.-C. Kuo, 2016: Observational characteristics and forecast challenge of Taipei flash flood afternoon thunderstorm: Case study of 14 June 2015 (in Chinese). Atmos. Sci., 44, 5782.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-C., M.-A. Lee, and M.-M. Lu, 2016: Association of Taiwan’s rainfall patterns with large-scale oceanic and atmospheric phenomena. Adv. Meteor., 2016, 3102895, https://doi.org/10.1155/2016/3102895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, https://doi.org/10.1175/JAM2460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., J. Zhang, and K. Howard, 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453462, https://doi.org/10.1175/2009JAMC2255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Ban, J.-S. Hong, and Y.-H. Kuo, 2020: Multi-resolution incremental 4DVar for WRF: Implementation and application at convective scale. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3865, 146, 36613674, https://doi.org/10.1002/qj.3865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meymaris, G., M. J. Dixon, S. M. Ellis, and J. C. Hubbert, 2015: Clutter Mitigation Decision (CMD) development and evaluation using neural networks. 37th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 2B.3A, https://ams.confex.com/ams/37RADAR/webprogram/Paper276333.html.

    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., and V. Chandrasekar, 2013: Gaussian model adaptive processing in time domain (GMAP-TD) for weather radars. J. Atmos. Oceanic Technol., 30, 25712584, https://doi.org/10.1175/JTECH-D-12-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, https://doi.org/10.1175/2008WAF2222205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, Z., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, https://doi.org/10.1175/JTECH-D-13-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siggia, A. D., and R. E. Passarelli, 2004: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proc. Third European Conf. on Radar Meteorology (ERAD), Visby, Sweden, ERAD, 67–73, www.copernicus.org/erad/2004/online/ERAD04_P_67.pdf.

    • Search Google Scholar
    • Export Citation
  • Sun, J., Y. Zhang, J. Ban, J.-S. Hong, and C. Lin, 2020: Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study. Mon. Wea. Rev., 148, 22112232, https://doi.org/10.1175/MWR-D-19-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tabary, P., 2007: The New French operational radar rainfall product. Part I: Methodology. Wea. Forecasting, 22, 393408, https://doi.org/10.1175/WAF1004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., J. Tang, and Y. Peng, 2012: Detection of heterogeneous samples based on loaded generalized inner product method. Digital Signal Process ., 22, 605613, https://doi.org/10.1016/j.dsp.2012.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, L., J. Zhang, C. Langston, J. Krause, K. Howard, and V. Lakshmanan, 2014: A physically based precipitation–nonprecipitation radar echo classifier using polarimetric radar and environmental data in a real-time system. Wea. Forecasting, 29, 11061119, https://doi.org/10.1175/WAF-D-13-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Testud, J., E. L. Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai, M., Y. M. Huang, Y. Fang, B. J. Lee, T. Y. Chou, and H. Yin, 2014: Characteristics of debris flow in Taiwan – A case study in Shenmu Area. INTERPRAEVENT Int. Symp., Nara, Japan, INTERPRAEVENT International Research Society, 117125, www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2014_1_117.pdf.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., G. Zhang, S. M. Ellis, D. Rajopadhyaya, and S. K. Avery, 2003: Radar reflectivity calibration using differential propagation phase measurement. Radio Sci ., 38, 8049, https://doi.org/10.1029/2002RS002676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Zhang, B. Kaney, C. Langston and K. Howard, 2012: High-Resolution Quantitative Precipitation Estimation and Quantitative Precipitation Forecast (HRQ2) System. Final Rep. for the International Agreement #24 between NOAA and the American Institute in Taiwan for Technical Cooperation in Meteorology and Forecast Systems Development, 64 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Zhang, A. Ryzhkov, and L. Tang, 2013: C-Band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Oceanic Technol., 30, 13541370, https://doi.org/10.1175/JTECH-D-12-00083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Zhang, P.-L. Chang, C. Langston, B. Kaney and L. Tang, 2016: Operational C-Band dual-polarization radar QPE for the subtropical complex terrain of Taiwan. Adv. Meteor., 2016, 4294271, https://doi.org/10.1155/2016/4294271.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., S. Cocks, L. Tang, A. Ryzhkov, P. Zhang, J. Zhang, and K. Howard, 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J. Hydrometeor., 20, 985997, https://doi.org/10.1175/JHM-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Y. F., S. Koch, J. McGinley, S. Albers, P. Beringer, M. Wolfson, and M. Chan, 2011: A space–time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 12241240, https://doi.org/10.1175/2010MWR3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xin, L., G. Recuter, and B. Larochelle, 1997: Reflectivity-rain rate relationship for convective rainshowers in Edmonton: Research note. Atmos.–Ocean, 35, 513521, https://doi.org/10.1080/07055900.1997.9649602.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2008: High-resolution QPE system for Taiwan. Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer-Verlag, 147–162.

    • Crossref
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National mosaic and multi-sensor QPE (NMQ) system: Description, results and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, https://doi.org/10.1175/2011BAMS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2020: A dual-polarization radar synthetic QPE for operations. J. Hydrometeorol., 21, 25072521.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 112 112
PDF Downloads 125 125 125

An Operational Multi-Radar Multi-Sensor QPE System in Taiwan

View More View Less
  • 1 Central Weather Bureau, Taipei, Taiwan
  • | 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Central Weather Bureau, Taipei, Taiwan
  • | 4 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 5 Central Weather Bureau, Taipei, Taiwan
  • | 6 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 7 Central Weather Bureau, Taipei, Taiwan
  • | 8 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

Over the last two decades, the Central Weather Bureau of Taiwan and the U.S. National Severe Storms Laboratory have been involved in a research and development collaboration to improve the monitoring and prediction of river flooding, flash floods, debris flows, and severe storms for Taiwan. The collaboration resulted in the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) system. The QPESUMS system integrates observations from multiple mixed-band weather radars, rain gauges, and numerical weather prediction model fields to produce high-resolution (1 km) and rapid-update (10 min) rainfall and severe storm monitoring and prediction products. The rainfall products are widely used by government agencies and emergency managers in Taiwan for flood and mudslide warnings as well as for water resource management. The 3D reflectivity mosaic and QPE products are also used in high-resolution radar data assimilation and for the verification of numerical weather prediction model forecasts. The system facilitated collaborations with academic communities for research and development of radar applications, including quantitative precipitation estimation and nowcasting. This paper provides an overview of the operational QPE capabilities in the Taiwan QPESUMS system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Zhang, jian.zhang@noaa.gov

Abstract

Over the last two decades, the Central Weather Bureau of Taiwan and the U.S. National Severe Storms Laboratory have been involved in a research and development collaboration to improve the monitoring and prediction of river flooding, flash floods, debris flows, and severe storms for Taiwan. The collaboration resulted in the Quantitative Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) system. The QPESUMS system integrates observations from multiple mixed-band weather radars, rain gauges, and numerical weather prediction model fields to produce high-resolution (1 km) and rapid-update (10 min) rainfall and severe storm monitoring and prediction products. The rainfall products are widely used by government agencies and emergency managers in Taiwan for flood and mudslide warnings as well as for water resource management. The 3D reflectivity mosaic and QPE products are also used in high-resolution radar data assimilation and for the verification of numerical weather prediction model forecasts. The system facilitated collaborations with academic communities for research and development of radar applications, including quantitative precipitation estimation and nowcasting. This paper provides an overview of the operational QPE capabilities in the Taiwan QPESUMS system.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Zhang, jian.zhang@noaa.gov
Save