• Ainsworth, E. A., C. R. Yendrek, S. Sitch, W. J. Collins, and L. D. Emberson, 2012: The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol., 63, 637661, https://doi.org/10.1146/annurev-arplant-042110-103829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg, 2011: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 40394072, https://doi.org/10.5194/acp-11-4039-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson, C., and M. Engardt, 2010: European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions. J. Geophys. Res., 115, D02303, https://doi.org/10.1029/2008JD011690.

    • Search Google Scholar
    • Export Citation
  • Anenberg, S. C., and Coauthors, 2020: Using satellites to track indicators of global air pollution and climate change impacts: Lessons learned from a NASA-supported science-stakeholder collaborative. GeoHealth, 4, e2020GH000270, https://doi.org/10.1029/2020GH000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arneth, A., and Coauthors, 2011: Global terrestrial isoprene emission models: Sensitivity to variability in climate and vegetation. Atmos. Chem. Phys., 11, 80378052, https://doi.org/10.5194/acp-11-8037-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, M., and Coauthors, 2005: Coupling between land ecosystems and the atmospheric hydrologic cycle through biogenic aerosol pathways. Bull. Amer. Meteor. Soc., 86, 17381742, https://doi.org/10.1175/BAMS-86-12-1738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bobbink, R., M. Hornung, and J. G. M. Roelofs, 1998: The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol., 86, 717738, https://doi.org/10.1046/j.1365-2745.1998.8650717.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, T. C., D. G. Street, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, D. M., and Coauthors, 2009: Fire in the Earth system. Science, 324, 481484, https://doi.org/10.1126/SCIENCE.1163886.

  • Caporn, S. J. M., T. W. Ashenden, and J. A. Lee, 2000: The effect of exposure to NO2 and SO2 on frost hardiness in Calluna vulgaris. Environ. Exp. Bot., 43, 111119, https://doi.org/10.1016/S0098-8472(99)00050-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, H., D. D. Baldocchi, R. John, S. Wolf, and M. Reichstein, 2017: Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J. Geophys. Res. Biogeosci., 122, 289307, https://doi.org/10.1002/2016JG003576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifton, O. E., and Coauthors, 2020a: Dry deposition of ozone over land: Processes, measurement, and modeling. Rev. Geophys., 58, e2019RG000670, https://doi.org/10.1029/2019RG000670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clifton, O. E., and Coauthors, 2020b: Influence of dynamic ozone dry deposition on ozone pollution. J. Geophys. Res. Atmos., 125, e2020JD032398, https://doi.org/10.1029/2020JD032398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cramer, W., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7, 357373, https://doi.org/10.1046/j.1365-2486.2001.00383.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dentener, F., and Coauthors, 2006: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles, 20, GB4003, https://doi.org/10.1029/2005GB002672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Witte, L. C., N. P. Rosenstock, S. Van Der Linde, and S. Braun, 2017: Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests. Sci. Total Environ., 605–606, 10831096, https://doi.org/10.1016/j.scitotenv.2017.06.142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, S., and Coauthors, 2019: Observed interactions between black carbon and hydrometeor during wet scavenging in mixed-phase clouds. Geophys. Res. Lett., 46, 84538463, https://doi.org/10.1029/2019GL083171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duhl, T. R., D. Helmig, and A. Guenther, 2008: Sesquiterpene emissions from vegetation: A review. Biogeosciences, 5, 761777, https://doi.org/10.5194/bg-5-761-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emberson, L. D., N. Kitwiroon, S. Beevers, P. Büker, and S. Cinderby, 2013: Scorched Earth: How will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems? Atmos. Chem. Phys., 13, 67416755, https://doi.org/10.5194/acp-13-6741-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. K., and M. Riches, 2020: Measuring biosphere–atmosphere exchange of short-lived climate forcers and their precursors. Acc. Chem. Res., 53, 14271435, https://doi.org/10.1021/acs.accounts.0c00203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Yuan, S. Fares, F. Loreto, P. Li, Y. Hoshika, and E. Paoletti, 2019: Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Plant Cell Environ., 42, 19391949, https://doi.org/10.1111/pce.13535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiore, A. M., V. Naik, and E. M. Leibensperger, 2015: Air quality and climate connections. J. Air Waste Manage. Assoc., 65, 645685, https://doi.org/10.1080/10962247.2015.1040526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowler, D., and Coauthors, 2009: Atmospheric composition change: Ecosystems–atmosphere interactions. Atmos. Environ., 43, 51935267, https://doi.org/10.1016/j.atmosenv.2009.07.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, M., and Coauthors, 2018: Evaluation of simulated ozone effects in forest ecosystems against biomass damage estimates from fumigation experiments. Biogeosciences, 15, 69416957, https://doi.org/10.5194/bg-15-6941-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Y., and A. P. K. Tai, 2015: Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010. Atmos. Chem. Phys., 15, 10 09310 106, https://doi.org/10.5194/acp-15-10093-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes, J. D., and Coauthors, 2000: Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bull. Amer. Meteor. Soc., 81, 15371576, https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganzeveld, L., and J. Lelieveld, 2004: Impact of Amazonian deforestation on atmospheric chemistry. Geophys. Res. Lett., 31, L06105, https://doi.org/10.1029/2003GL019205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganzeveld, L., L. Bouwman, E. Stehfest, D. P. van Vuuren, B. Eickhout, and J. Lelieveld, 2010: Impact of future land use and land cover changes on atmospheric chemistry-climate interactions. J. Geophys. Res., 115, D23301, https://doi.org/10.1029/2010JD014041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleason, K. E., J. R. McConnell, M. M. Arienzo, N. Chellman, and W. M. Calvin, 2019: Four-fold increase in solar forcing on snow in western US burned forests since 1999. Nat. Commun., 10, 2026, https://doi.org/10.1038/S41467-019-09935-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, A. H., M. McKay, M. R. Kurpius, G. W. Schade, A. Lee, R. Holzinger, and R. A. Rasmussen, 2004: Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett., 31, L22106, https://doi.org/10.1029/2004GL021259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grantz, D. A., J. H. B. Garner, and D. W. Johnson, 2003: Ecological effects of particulate matter. Environ. Int., 29, 213239, https://doi.org/10.1016/S0160-4120(02)00181-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greaver, T. L., and Coauthors, 2016: Key ecological responses to nitrogen are altered by climate change. Nat. Climate Change, 6, 836843, https://doi.org/10.1038/nclimate3088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grennfelt, P., A. Engleryd, M. Forsius, Ø. Hov, H. Rodhe, and E. Cowling, 2019: Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 49, 849864, https://doi.org/10.1007/S13280-019-01244-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grote, R., and Coauthors, 2014: A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. Plant Cell Environ., 37, 19651980, https://doi.org/10.1111/pce.12326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., R. K. Monson, and R. Fall, 1991: Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. J. Geophys. Res., 96, 10 79910 808, https://doi.org/10.1029/91JD00960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., and Coauthors, 1995: A global model of natural volatile organic compound emissions. J. Geophys. Res., 100, 88738892, https://doi.org/10.1029/94JD02950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., M. Kulmala, A. Turnipseed, J. Rinne, T. Suni, and A. Reissell, 2011: Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS) assessment of global observational networks. Boreal Environ. Res., 16, 321336, www.borenv.net/BER/archive/pdfs/ber16/ber16-321.pdf.

    • Search Google Scholar
    • Export Citation
  • Hardacre, C., O. Wild, and L. Emberson, 2015: An evaluation of ozone dry deposition in global scale chemistry climate models. Atmos. Chem. Phys., 15, 64196436, https://doi.org/10.5194/acp-15-6419-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hari, P., M. O. Andreae, P. Kabat, and M. Kulmala, 2009: A comprehensive network of measuring stations to monitor climate change. Boreal Environ. Res., 14, 442446, www.borenv.net/BER/archive/pdfs/ber14/ber14-442.pdf.

    • Search Google Scholar
    • Export Citation
  • He, C., and M. Flanner, 2020: Snow Albedo and Radiative Transfer: Theory, Modeling, and Parameterization. Springer Series in Light Scattering, Springer, 67133.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and D. V. Spracklen, 2015: Land use change impacts on air quality and climate. Chem. Rev., 115, 44764496, https://doi.org/10.1021/cr500446g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and J. A. Geddes, 2016: The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone. Atmos. Chem. Phys., 16, 14 99715 010, https://doi.org/10.5194/acp-16-14997-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollaway, M. J., S. R. Arnold, W. J. Collins, G. Folberth, and A. Rap, 2017: Sensitivity of midnineteenth century tropospheric ozone to atmospheric chemistry-vegetation interactions. J. Geophys. Res. Atmos., 122, 24522473, https://doi.org/10.1002/2016JD025462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudman, R. C., and Coauthors, 2012: Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space based-constraints. Atmos. Chem. Phys., 12, 77797795, https://doi.org/10.5194/acp-12-7779-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Kanakidou, M., S. Myriokefalitakis, and K. Tsigaridis, 2018: Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett., 13, 063004, https://doi.org/10.1088/1748-9326/aabcdb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T., and Coauthors, 2010: Efficient atmospheric cleansing of oxidized organic trace gases by vegetation. Science, 330, 816819, https://doi.org/10.1126/science.1192534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavassalis, S. C., and J. G. Murphy, 2017: Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett., 44, 29222931, https://doi.org/10.1002/2016GL071791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. F., D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson, 2013: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499, 324327, https://doi.org/10.1038/nature12291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krupa, S. V., 2003: Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut., 124, 179221, https://doi.org/10.1016/S0269-7491(02)00434-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurpius, M. R., and A. H. Goldstein, 2003: Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett., 30, 1371, https://doi.org/10.1029/2002GL016785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmann, B., B. Duncan, C. Textor, J. Trentmann, and G. R. van der Werf, 2009: Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ., 43, 107116, https://doi.org/10.1016/j.atmosenv.2008.09.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., A. Mahalov, and P. Hyde, 2016: Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/ Chem. Environ. Res. Lett., 11, 114017, https://doi.org/10.1088/1748-9326/11/11/114017.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2016: Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. USA, 113, 58745879, https://doi.org/10.1073/pnas.1525736113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardozzi, D., J. P. Sparks, and G. Bonan, 2013: Integrating O3 influences on terrestrial processes: Photosynthetic and stomatal response data available for regional and global modeling. Biogeosciences, 10, 68156831, https://doi.org/10.5194/bg-10-6815-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loreto, F., and J. P. Schnitzler, 2010: Abiotic stresses and induced BVOCs. Trends Plant Sci., 15, 154166, https://doi.org/10.1016/j.tplants.2009.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Los, S. O., 2013: Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: Indication for a CO2 fertilization effect in global vegetation. Global Biogeochem. Cycles, 27, 318330, https://doi.org/10.1002/gbc.20027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mao, J., and Coauthors, 2016: Human-induced greening of the northern extratropical land surface. Nat. Climate Change, 6, 959963, https://doi.org/10.1038/nclimate3056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melamed, M. L., and Coauthors, 2015: The International Global Atmospheric Chemistry (IGAC) project: Facilitating atmospheric chemistry research for 25 years. Anthropocene, 12, 1728, https://doi.org/10.1016/j.ancene.2015.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikkelsen, T. N., and Coauthors, 2013: Towards supersites in forest ecosystem monitoring and research. Developments in Environmental Science, Vol. 13, Elsevier, 475496.

    • Search Google Scholar
    • Export Citation
  • NASEM, 2016: The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow. National Academies Press, 208 pp., https://doi.org/10.17226/23573.

    • Search Google Scholar
    • Export Citation
  • Ng, N. L., and Coauthors, 2017: Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmos. Chem. Phys., 17, 21032162, https://doi.org/10.5194/acp-17-2103-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. B., and Coauthors, 2015: Rapid deposition of oxidized biogenic compounds to a temperate forest. Proc. Natl. Acad. Sci. USA, 112, E392E401, https://doi.org/10.1073/pnas.1418702112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niinemets Ü., and Coauthors, 2010: The emission factor of volatile isoprenoids: Stress, acclimation, and developmental responses. Biogeosciences, 7, 22032223, https://doi.org/10.5194/bg-7-2203-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliphant, A. J., 2012: Terrestrial ecosystem-atmosphere exchange of CO2, water and energy from FLUXNET; review and meta-analysis of a global in-situ observatory. Geogr. Compass, 6, 689705, https://doi.org/10.1111/gec3.12009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellegrini, A. F., L. O. Hedin, A. C. Staver, and N. Govender, 2015: Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology, 96, 12751285, https://doi.org/10.1890/14-1158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyke, D. A., J. C. Chambers, J. L. Beck, M. L. Brooks, and B. A. Mealor, 2016: Land uses, fire, and invasion: Exotic annual Bromus and human dimensions. Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US, Springer, 307337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, L. E., E. B. Allen, and T. Meixner, 2010: Risk-based determination of critical nitrogen deposition loads for fire spread in Southern California deserts. Ecol. Appl., 20, 13201335, https://doi.org/10.1890/09-0398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, D. C., and Coauthors, 2018: The major barriers to evidence-informed conservation policy and possible solutions. Conserv. Lett., 11, e12564, https://doi.org/10.1111/conl.12564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenstiel, T. N., and Coauthors, 2003: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256259, https://doi.org/10.1038/nature01312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadiq, M., A. P. K. Tai, D. Lombardozzi, and M. V. Martin, 2017: Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks. Atmos. Chem. Phys., 17, 30553066, https://doi.org/10.5194/acp-17-3055-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, M. G., W. J. Collins, D. L. Hemming, and R. A. Betts, 2007: Stomatal conductance changes due to increasing carbon dioxide levels: Projected impact on surface ozone levels. Tellus, 59B, 404411, https://doi.org/10.1111/j.1600-0889.2007.00277.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sant’Anna-Santos, B. F., and Coauthors, 2006: Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environ. Exp. Bot., 58, 158168, https://doi.org/10.1016/j.envexpbot.2005.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, C. E., S. R. Arnold, S. A. Monks, A. Asmi, P. Paasonen, and D. V. Spracklen, 2018: Substantial large-scale feedbacks between natural aerosols and climate. Nat. Geosci., 11, 4448, https://doi.org/10.1038/s41561-017-0020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shilling, J. E., and Coauthors, 2013: Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmos. Chem. Phys., 13, 20912113, https://doi.org/10.5194/acp-13-2091-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simkin, S. M., and Coauthors, 2016: Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA, 113, 40864091, https://doi.org/10.1073/pnas.1515241113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A., and M. Agrawal, 2007: Acid rain and its ecological consequences. J. Environ. Biol., 29, 1524, http://jeb.co.in/journal_issues/200801_jan08/paper_02.pdf.

    • Search Google Scholar
    • Export Citation
  • Suni, T., and Coauthors, 2015: The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives. Anthropocene, 12, 6984, https://doi.org/10.1016/j.ancene.2015.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, A. P., L. J. Mickley, C. L. Heald, and S. Wu, 2013: Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys. Res. Lett., 40, 34793483, https://doi.org/10.1002/grl.50650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, J., G. Schurgers, and R. Rinnan, 2019: Process understanding of soil BVOC fluxes in natural ecosystems: A review. Rev. Geophys., 57, 966986, https://doi.org/10.1029/2018RG000634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unger, N., 2014: Human land-use-driven reduction of forest volatiles cools global climate. Nat. Climate Change, 4, 907910, https://doi.org/10.1038/nclimate2347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivanco, M. G., and Coauthors, 2018: Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: Evaluation, effects of changes in emissions and implications for habitat protection. Atmos. Chem. Phys., 18, 10 19910 218, https://doi.org/10.5194/acp-18-10199-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendling, Z. A., J. W. Emerson, D. C. Esty, M. A. Levy, and A. De Sherbinin, 2018: Environmental performance index. Yale Center for Environmental Law and Policy, https://epi.yale.edu/.

    • Search Google Scholar
    • Export Citation
  • Wesely, M. L., and B. B. Hicks, 2000: A review of the current status of knowledge on dry deposition. Atmos. Environ., 34, 22612282, https://doi.org/10.1016/S1352-2310(99)00467-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western US forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wingsle, G., and J. E. Hällgren, 1993: Influence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in Scots pine needles. J. Exp. Bot., 44, 463470, https://doi.org/10.1093/jxb/44.2.463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wittig, V. E., Ainsworth, E. A., and Long, S. P. 2007: To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ, 30, 11501162, https://doi.org/10.1111/J.1365-3040.2007.01717.X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, G. M., J. A. Thornton, M. McKay, and A. H. Goldstein, 2011: Forest-atmosphere exchange of ozone: Sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry. Atmos. Chem. Phys., 11, 78757891, https://doi.org/10.5194/acp-11-7875-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, S., L. J. Mickley, J. O. Kaplan, and D. J. Jacob, 2012: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys., 12, 15971609, https://doi.org/10.5194/acp-12-1597-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yee, L. D., and Coauthors, 2018: Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmos. Chem. Phys., 18, 10 43310 457, https://doi.org/10.5194/acp-18-10433-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, B., and Coauthors, 2017: Enhanced PM2.5 pollution in China due to aerosol-cloud interactions. Sci. Rep., 7, 4453, https://doi.org/10.1038/S41598-017-04096-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and Coauthors, 2016: Greening of the Earth and its drivers. Nat. Climate Change, 6, 791795, https://doi.org/10.1038/nclimate3004.

  • Zong, R., and Coauthors, 2018: Strong ozone production at a rural site in the North China Plain: Mixed effects of urban plumes and biogenic emissions. J. Environ. Sci., 71, 261270, https://doi.org/10.1016/j.jes.2018.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 1861 0 0
PDF Downloads 1596 0 0

Interactions between Air Pollution and Terrestrial Ecosystems: Perspectives on Challenges and Future Directions

View More View Less
  • 1 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Atmospheric Chemistry Observations and Modeling, and Modeling and Mesoscale and Microscale Meteorology, National Center for Atmospheric Research, Boulder, Colorado
  • | 3 Air Resources Division, National Park Service, Denver, Colorado
  • | 4 Department of Chemistry, Colorado State University, Fort Collins, Colorado
  • | 5 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 6 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • | 7 U.K. Centre for Ecology and Hydrology, Penicuik, Midlothian, and School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
  • | 8 Department of Chemistry, Colorado State University, Fort Collins, Colorado
  • | 9 Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado
  • | 10 Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado
  • | 11 Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 12 Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
Restricted access

Abstract

Interactions between air pollution and terrestrial ecosystems play an important role in the Earth system. However, process-based knowledge of air pollution–terrestrial ecosystem interactions is limited, hindering accurate quantification of how changes in tropospheric chemistry, biogeochemical cycling, and climate affect air quality and its impact on humans and ecosystems. Here we summarize current challenges and future directions for advancing the understanding of air pollution–ecosystem interactions by synthesizing discussions from a multidisciplinary group of scientists at a recent Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS) early-career workshop. Specifically, we discuss the important elements of air pollution–terrestrial ecosystem interactions, including vegetation and soil uptake and emissions of air pollutants and precursors, in-canopy chemistry, and the roles of human activities, fires, and meteorology. We highlight the need for a coordinated network of measurements of long-term chemical fluxes and related meteorological and ecological quantities with expanded geographic and ecosystem representation, data standardization and curation to reduce uncertainty and enhance observational syntheses, integrated multiscale observational and modeling capabilities, collaboration across scientific disciplines and geographic regions, and active involvement by stakeholders and policymakers. Such an enhanced network will continue to facilitate the process-level understanding and thus predictive ability of interactions between air pollution and terrestrial ecosystems and impacts on local-to-global climate and human health.

CURRENT AFFILIATION: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Cenlin He, cenlinhe@ucar.edu

Abstract

Interactions between air pollution and terrestrial ecosystems play an important role in the Earth system. However, process-based knowledge of air pollution–terrestrial ecosystem interactions is limited, hindering accurate quantification of how changes in tropospheric chemistry, biogeochemical cycling, and climate affect air quality and its impact on humans and ecosystems. Here we summarize current challenges and future directions for advancing the understanding of air pollution–ecosystem interactions by synthesizing discussions from a multidisciplinary group of scientists at a recent Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS) early-career workshop. Specifically, we discuss the important elements of air pollution–terrestrial ecosystem interactions, including vegetation and soil uptake and emissions of air pollutants and precursors, in-canopy chemistry, and the roles of human activities, fires, and meteorology. We highlight the need for a coordinated network of measurements of long-term chemical fluxes and related meteorological and ecological quantities with expanded geographic and ecosystem representation, data standardization and curation to reduce uncertainty and enhance observational syntheses, integrated multiscale observational and modeling capabilities, collaboration across scientific disciplines and geographic regions, and active involvement by stakeholders and policymakers. Such an enhanced network will continue to facilitate the process-level understanding and thus predictive ability of interactions between air pollution and terrestrial ecosystems and impacts on local-to-global climate and human health.

CURRENT AFFILIATION: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

Corresponding author: Cenlin He, cenlinhe@ucar.edu
Save