• American Meteorological Society, 2020: Megaflash. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Megaflash.

  • Beavis, N. K., T. J. Lang, S. A. Rutledge, W. A. Lyons, and S. A. Cummer, 2014: Regional, seasonal, and diurnal variations in cloud-to-ground lightning with large impulse change moment changes. Mon. Wea. Rev., 118, 36663682, https://doi.org/10.1175/MWR-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., and Coauthors, 2019: Meteorological imagery for the Geostationary Lightning Mapper. J. Geophys. Res. Atmos., 124, 14 28514 309, https://doi.org/10.1029/2019JD030874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., M. J. Murphy, T. L. McCormick, and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, https://doi.org/10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., N. L. Curtis, S. M. Stough, and C. J. Schultz, 2019: A radar investigation of precipitation properties during discrepancies between GOES-16 GLM and LMA observed flash rates in the Skyline Alabama supercell of 22 April 2017. 99th Annual Meeting, Phoenix, AZ, Amer. Meteor. Soc., 1018, https://ams.confex.com/ams/2019Annual/mediafile/Handout/Paper352786/Carey_Poster_AMS_2.pdf.

    • Search Google Scholar
    • Export Citation
  • Clayton, A., S. A. Rutledge, K. Hilburn, and S. D. Miller, 2019: GLM detection efficiencies in anomalous charge structure thunderstorms. AGU Fall Meeting 2019, San Francisco, CA, Amer. Geophys. Union, Abstract AE11A-3184.

  • Coleman, L. M., M. Stolzenburg, T. C. Marshall, and M. Stanley, 2008: Horizontal lightning propagation, preliminary breakdown, and electric potential in New Mexico thunderstorms. J. Geophys. Res., 113, D09208, https://doi.org/10.1029/2007JD009459.

    • Search Google Scholar
    • Export Citation
  • Cummer, S. A., W. A. Lyons, and M. A. Stanley, 2013: Three years of lightning impulse charge moment change measurements in the United States. J. Geophys. Res. Atmos., 108, 51765189, https://doi.org/10.1002/jgrd.50442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ely, B. L., R. E. Orville, L. D. Carey, and C. L. Hodapp, 2008: Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston, Texas. J. Geophys. Res., 113, D08114, https://doi.org/10.1029/2007JD008445.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., D. Mach, W. J. Koshak, and R. J. Blakeslee 2010: GLM Lightning Cluster-Filter Algorithm (LCFA) Algorithm Theoretical Basis Document (ATBD). https://www.goes-r.gov/products/ATBDs/baseline/Lightning_v2.0_no_color.pdf.

  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). J. Atmos. Res., 125–126, 3449, https://doi.org/10.1016/j.atmosres.2013.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandell, J., U. Finke, and R. Stuhlmann, 2009: The EUMETSAT Meteosat Third Generation Lightning Imager (MTG-LI): Applications and product processing. Ninth EMS Annual Meeting, Toulouse, France, EMS, EMS2009-551, https://meetingorganizer.copernicus.org/EMS2009/EMS2009-551.pdf.

    • Search Google Scholar
    • Export Citation
  • Krehbiel, P. R., 1986: The Earth’s Electrical Environment, National Academies Press, 90–113.

  • Lang, T. J., S. A. Rutledge, and K. C. Wiens, 2004: Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31, https://doi.org/10.1029/2004gl019823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Coauthors, 2017: WMO world record lightning extremes: Longest reported flash distance and longest reported flash duration. Bull. Amer. Meteor. Soc., 98, 11531168, https://doi.org/10.1175/BAMS-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lojou, J.-Y., and K. Cummins, 2005: On the representation of two-and three dimensional total lightning information. Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 2.4, https://ams.confex.com/ams/Annual2005/techprogram/paper_86442.htm.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., E. C. Bruning, T. A. Warner, D. R. MacGorman, S. Edgington, C. Tillier, and J. Mlynarczyk, 2020: Megaflashes: Just how long can a lightning discharge get? Bull. Amer. Meteor. Soc., 101, E73E86, https://doi.org/10.1175/BAMS-D-19-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., 2020: Geostationary Lightning Mapper clustering algorithm stability. J. Geophys. Res. Atmos., 125, e2019JD031900, https://doi.org/10.1029/2019JD031900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mach, D. M., and H. J. Christian, R. J. Blakeslee, D. J. Boccippio, S. J. Goodman, and W. L. Boeck, 2007: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res., 112, D09210, https://doi.org/10.1029/2006JD007787.

    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., and W. D. Rust, 1993: Two types of vertical electrical structures in stratiform precipitation regions of mesoscale convective systems. Bull. Amer. Meteor. Soc., 74, 21592170, https://doi.org/10.1175/1520-0477(1993)074<2159:TTOVES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, T. C., M. Stolzenburg, P. R. Krehbiel, N. R. Lund, and C. R. Maggio, 2009: Electrical evolution during the decay stage of New Mexico thunderstorms. J. Geophys. Res., 114, D02209, https://doi.org/10.1029/2008JD010637.

    • Search Google Scholar
    • Export Citation
  • NASA, 2019: GOES-R series data book. NOAA–NASA Doc., 240 pp., www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf.

  • Peterson, M., 2019a: Research applications for the Geostationary Lightning Mapper operational lightning flash data product. J. Geophys. Res. Atmos., 124, 10 20510 231, https://doi.org/10.1029/2019JD031054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2019b: Using lightning flashes to image thunderclouds. J. Geophys. Res. Atmos., 124, 10 17510 185, https://doi.org/10.1029/2019JD031055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., 2020a: Lightning megaflash data, V2. Harvard Dataverse, accessed 4 October 2020, https://doi.org/10.7910/DVN/YSDLWJ.

  • Peterson, M., 2020b: Removing solar artifacts from Geostationary Lightning Mapper data to document lightning extremes. J. Appl. Remote Sens., 14, 032402, https://doi.org/10.1117/1.JRS.14.032402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., and S. Rudlosky, 2019: The time evolution of optical lightning flashes. J. Geophys. Res. Atmos., 124, 333349, https://doi.org/10.1029/2018JD028741.

    • Search Google Scholar
    • Export Citation
  • Peterson, M., W. Deierling, C. Liu, D. Mach, and C. Kalb, 2017a: The properties of optical lightning flashes and the clouds they illuminate. J. Geophys. Res. Atmos., 122, 423442, https://doi.org/10.1002/2016JD025312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, W. Deierling, 2017b: The evolution and structure of extreme optical lightning flashes. J. Geophys. Res. Atmos. ,122, 13 37013 386, https://doi.org/10.1002/2017jd026855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, W. Deierling, 2018: Mapping the lateral development of lightning flashes from orbit. J. Geophys. Res. Atmos., 123, 96749687, https://doi.org/10.1029/2018JD028583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, and D. Zhang, 2020a: Thunderstorm cloud-type classification from space-based lightning imagers. Mon. Wea. Rev., 148, 18911898, https://doi.org/10.1175/MWR-D-19-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., and Coauthors, 2020b: New World Meteorological Organization certified megaflash lightning extremes for flash distance (709 km) and duration (16.73 s) recorded from space. Geophys. Res. Lett., 47, e2020GL088888, https://doi.org/10.1029/2020GL088888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, M., S. Rudlosky, and D. Zhang, 2020c: Changes to the appearance of optical lightning flashes observed from space according to thunderstorm organization and structure. J. Geophys. Res. Atmos., 125, e2019JD031087, https://doi.org/10.1029/2019JD031087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 35733576, https://doi.org/10.1029/1999GL010856.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., S. J. Goodman, K. S. Virts, and E. C. Bruning, 2019: Initial Geostationary Lightning Mapper observations. Geophys. Res. Lett., 46, 10971104, https://doi.org/10.1029/2018GL081052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull, 1994: Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Wea. Rev., 122, 17771797, https://doi.org/10.1175/1520-0493(1994)122<1777:HDOEAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., and Coauthors, 2000: Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett., 27, 17031706, https://doi.org/10.1029/1999GL010845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., W. Lyu, C. Cao, P. Li, D. Zheng, X. Fang, and Y. Zhang, 2019: FY-4A LMI observed lightning activity in Super Typhoon Mangkhut (2018) in comparison with WWLLN data. J. Meteor. Res., 34, 336352, https://doi.org/10.1007/S13351-020-9500-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 0 0
Full Text Views 1195 2 2
PDF Downloads 914 1 1

Where Are the Most Extraordinary Lightning Megaflashes in the Americas?

View More View Less
  • 1 ISR-2, Los Alamos National Laboratory, Los Alamos, New Mexico
Restricted access

Abstract

The Geostationary Lightning Mappers (GLMs) on NOAA’s current Geostationary Operational Environmental Satellites (GOES) map the lateral development of lightning flashes across the Western Hemisphere up to 54° latitude. As staring instruments that continuously observe the Americas (GOES-16) and the Pacific Ocean (GOES-17), the GLMs resolve the spatial extent of even the rarest and most exceptional lightning flashes. GOES-16 GLM observations that include the Americas’ hotspots for the largest and longest-lasting lightning “megaflashes” are used to document where and when mesoscale lightning occurs that exceeds the largest (321 km) and longest-lasting (7.74 s) flashes that have been measured by ground-based instruments. The most exceptional GLM megaflashes in terms of extent (709 km) and duration (16.730 s) were recently recognized as global lightning extremes by the World Meteorological Organization (WMO). These world record cases beat the next-largest flash by 36 km and the next-longest-lasting flash by 1.5 s. The top GLM megaflashes between 1 January 2018 and 15 January 2020 that exceed the previous LMA records are concentrated in the central United States (most frequently along the Oklahoma–Arkansas border) and southern Brazil (Rio Grande do Sul) and Uruguay. The top North American megaflashes are most common from April through June and occur on between 4 and 14 nights per month. The top South American megaflashes are most frequent between October and January and likewise have a nocturnal preference following the diurnal cycle of mesoscale convective systems (MCSs). Potential future field programs that aim to observe extreme megaflashes should focus on these regions and seasons.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Peterson, mpeterson@lanl.gov

Abstract

The Geostationary Lightning Mappers (GLMs) on NOAA’s current Geostationary Operational Environmental Satellites (GOES) map the lateral development of lightning flashes across the Western Hemisphere up to 54° latitude. As staring instruments that continuously observe the Americas (GOES-16) and the Pacific Ocean (GOES-17), the GLMs resolve the spatial extent of even the rarest and most exceptional lightning flashes. GOES-16 GLM observations that include the Americas’ hotspots for the largest and longest-lasting lightning “megaflashes” are used to document where and when mesoscale lightning occurs that exceeds the largest (321 km) and longest-lasting (7.74 s) flashes that have been measured by ground-based instruments. The most exceptional GLM megaflashes in terms of extent (709 km) and duration (16.730 s) were recently recognized as global lightning extremes by the World Meteorological Organization (WMO). These world record cases beat the next-largest flash by 36 km and the next-longest-lasting flash by 1.5 s. The top GLM megaflashes between 1 January 2018 and 15 January 2020 that exceed the previous LMA records are concentrated in the central United States (most frequently along the Oklahoma–Arkansas border) and southern Brazil (Rio Grande do Sul) and Uruguay. The top North American megaflashes are most common from April through June and occur on between 4 and 14 nights per month. The top South American megaflashes are most frequent between October and January and likewise have a nocturnal preference following the diurnal cycle of mesoscale convective systems (MCSs). Potential future field programs that aim to observe extreme megaflashes should focus on these regions and seasons.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Peterson, mpeterson@lanl.gov
Save