• Alessandrini, S., and E. Ferrero, 2009: A hybrid Lagrangian-Eulerian particle model for reacting pollutant dispersion in non-homogeneous non- isotropic turbulence. Physica A, 388, 13751387, https://doi.org/10.1016/j.physa.2008.12.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., E. Ferrero, C. Pertot, and E. Orlandi, 2005: Comparison of different dispersion models with tracer experiment. Nuovo Cimento, 28, 141149, https://doi.org/10.1393/NCC/I2005-10187-0.

    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., 1993: Atmospheric dispersion and tracer ventilation in a deep mountain valley. J. Appl. Meteor., 32, 10171037, https://doi.org/10.1175/1520-0450(1993)032<1017:ADATVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., and J. E. Flaherty, 2006: Joint Urban 2003: Study overview and instrument locations. Rep. PNNL-15967, 92 pp., www.pnnl.gov/main/publications/external/technical_reports/PNNL-15967.pdf.

    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., B. K. Lamb, and R. Eskridge, 1992: Wintertime dispersion in a mountainous basin at Roanoke, Virginia: Tracer study. J. Appl. Meteor., 31, 12951311, https://doi.org/10.1175/1520-0450(1992)031<1295:WDIAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: Overview of URBAN 2000. Bull. Amer. Meteor. Soc., 83, 521536, https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., M. Leach, L. Stockham, J. Shinn, R. Hosker, J. Bowers, and J. Pace, 2004: Overview of Joint Urban 2003: An atmospheric dispersion study in Oklahoma City. Symp. on Planning, Nowcasting and Forecasting in the Urban Zone and Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA. Amer. Meteor. Soc., J7.1, https://ams.confex.com/ams/84Annual/techprogram/paper_74349.htm.

    • Search Google Scholar
    • Export Citation
  • Ambrosetti, P., D. Anfossi, S. Cieslik, G. Graziani, G. Grippa, R. L. A. Marzorati, A. Stingele, and H. Zimmermann, 1994: The TRANSALP-90 Campaign: The second tracer release experiment in a sub-alpine valley. Tech. Rep. EUR 15952 EN, 70 pp., https://op.europa.eu/en/publication-detail/-/publication/3c1e5150-ef36-443c-8fbd-4a3e7067087b.

    • Search Google Scholar
    • Export Citation
  • Ambrosetti, P., and et al. , 1998: Mesoscale transport of atmospheric trace constituents across the central Alps: Transalp tracer experiments. Atmos. Environ., 32, 12571272, https://doi.org/10.1016/S1352-2310(97)00185-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anfossi, D., 1985: Analysis of plume rise data from five TVA Steam Plants. J. Climate Appl. Meteor., 24, 12251236, https://doi.org/10.1175/1520-0450(1985)024<1225:AOPRDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anfossi, D., E. Ferrero, G. Brusasca, A. Marzorati, and G. Tinarelli, 1993: A simple way of computing buoyant plume rise in Lagrangian stochastic dispersion models. Atmos. Environ., 27, 14431451, https://doi.org/10.1016/0960-1686(93)90130-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arduini, G., C. Staquet, and C. Chemel, 2016: Interactions between the night-time valley-wind system and a developing cold-air pool. Bound.-Layer Meteor., 161, 4972, https://doi.org/10.1007/s10546-016-0155-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arduini, G., C. Chemel, and C. Staquet, 2020: Local and non-local controls on a persistent cold-air pool in the Arve River Valley. Quart. J. Roy. Meteor. Soc., 146, 24972521, https://doi.org/10.1002/qj.3776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arya, S., 1984: Parametric relations for the atmospheric boundary layer. Bound.-Layer Meteor ., 30, 5773, https://doi.org/10.1007/BF00121949.

  • Banta, R. M., L. D. Olivier, W. N. Neff, D. H. Levinson, and D. Ruffieux, 1995: Influence of canyon-induced flows on flow and dispersion over adjacent plains. Theor. Appl. Climatol., 52, 2742, https://doi.org/10.1007/BF00865505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. S. Darby, J. D. Fast, J. Pinto, C. D. Whiteman, W. J. Shaw, and B. D. Orr, 2004: Nocturnal low-level jet in a mountain basin complex. I: Evolution and effects on local flows. J. Appl. Meteor., 43, 13481365, https://doi.org/10.1175/JAM2142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barad, M. L., Ed., 1958: Project prairie grass, A field program in diffusion. Geophysical Research Papers, No. 59, Vols. I and II, Air Force Cambridge Research Center Rep. AFCRC-TR-58-235, 479 pp.

    • Search Google Scholar
    • Export Citation
  • Bisignano, A., L. Mortarini, E. Ferrero, and S. Alessandrini, 2017: Model chain for buoyant plume dispersion. Int. J. Environ. Pollut., 62, 200213, https://doi.org/10.1504/IJEP.2017.089406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisignano, A., E. Ferrero, and S. Alessandrini, 2019: A Lagrangian dispersion model with a stochastic equation for the temperature fluctuations. Int. J. Environ. Pollut., 65, 311324, https://doi.org/10.1504/IJEP.2019.103747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A., and H. Tennekes, 1968: Asymptotic similarity in neutral barotropic planetary boundary layers. J. Atmos. Sci., 25, 10151020, https://doi.org/10.1175/1520-0469(1968)025<1015:ASINBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, B. M., 1994: Long-term tracer study at Los Alamos, New Mexico. Part I: Wind, turbulence, and tracer patterns. J. Appl. Meteor., 33, 12211235, https://doi.org/10.1175/1520-0450(1994)033<1221:LTTSAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowne, N. E., R. J. Londergan, D. R. Murray, and H. S. Borenstein, 1983: Overview, results, and conclusions for the EPRI Plume Model Validation and Development Project: Plains site. Electric Power Research Institute Rep. EA-3074, 230 pp.

    • Search Google Scholar
    • Export Citation
  • Briggs, G. A., 1975: Plume rise predictions. Lectures on Air Pollution and Environmental Impact Analysis, Amer. Meteor. Soc., 59–111.

  • Britter, R. E., S. Di Sabatino, F. Caton, K. M. Cooke, P. G. Simmonds, and G. Nickless, 2002: Results from three field tracer experiments on the neighbourhood scale in the City of Birmingham UK. Water Air Soil Pollut. Focus, 2, 7990, https://doi.org/10.1023/A:1021306612036.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., T. L. Clark, and W. D. Hall, 1995: The dispersion of tracer plumes in mountainous regions in Central Arizona: Comparisons between observations and modeling results. J. Appl. Meteor., 34, 971988, https://doi.org/10.1175/1520-0450(1995)034<0971:TDOTPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, J. C., and S. R. Hanna, 2004: Air quality model performance evaluation. Meteor. Atmos. Phys., 87, 167196, https://doi.org/10.1007/s00703-003-0070-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., R. Bornstein, and C. G. Lindsey, 1999: Transport of a power plant tracer plume over Grand Canyon National Park. J. Appl. Meteor., 38, 10491068, https://doi.org/10.1175/1520-0450(1999)038<1049:TOAPPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrust, M., C. Whiteman, and S. Hoch, 2013: Observations of thermally driven wind jets at the exit of Weber Canyon, Utah. J. Appl. Meteor. Climatol., 52, 11871200, https://doi.org/10.1175/JAMC-D-12-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clawson, K. L., and et al. , 2005: Joint Urban 2003 (JU03) SF6 atmospheric tracer field tests. NOAA Tech. Memo. OAR ARL-254, Air Resources Laboratory, 237 pp.

    • Search Google Scholar
    • Export Citation
  • Clements, W. E., J. A. Archuleta, and P. H. Gudiksen, 1989: Experimental design of the 1984 ASCOT field study. J. Appl. Meteor., 28, 405413, https://doi.org/10.1175/1520-0450(1989)028<0405:EDOTAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colonna, N., E. Ferrero, and U. Rizza, 2009: Nonlocal boundary layer: The pure buoyancy driven and the buoyancy-shear-driven cases. J. Geophys. Res., 114, D05102, https://doi.org/10.1029/2008JD010682.

    • Search Google Scholar
    • Export Citation
  • Conangla, L., J. Cuxart, M. A. Jiménez, D. Martínez-Villagrasa, J. R. Miró, D. Tabarelli, and D. Zardi, 2018: Cold-air pool evolution in a wide Pyrenean valley. Int. J. Climatol., 38, 28522865, https://doi.org/10.1002/joc.5467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connan, O., P. Laguionie, D. Maro, D. Hébert, P. Mestayer, F. Rodriguez, V. Rodrigues, and J. Rosant, 2015: Vertical and horizontal concentration profiles from a tracer experiment in a heterogeneous urban area. Atmos. Res., 154, 126137, https://doi.org/10.1016/j.atmosres.2014.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coulter, R. L., and P. Gudiksen, 1995: The dependence of canyon winds on surface cooling and external forcing in Colorado’s Front Range. J. Appl. Meteor., 34, 14191429, https://doi.org/10.1175/1520-0450(1995)034<1419:TDOCWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cramer, H. E., F. A. Record, and H. C. Vaughan, 1958: The study of the diffusion of gases or aerosols in the lower atmosphere. Rep. AFCRC-TR-58-239, Department of Meteorology, Massachusetts Institute of Technology, 133 pp.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., and R. M. Banta, 2006: The modulation of canyon flows by larger-scale influences. 12th Conf. Mountain Meteorology, Santa Fe, NM, Amer. Meteor. Soc., 14.4, https://ams.confex.com/ams/SantaFe2006/techprogram/paper_114383.htm.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., K. J. Allwine, and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45, 740753, https://doi.org/10.1175/JAM2367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Franceschi, M., and D. Zardi, 2009: Study of wintertime high pollution episodes during the Brenner-South ALPNAP measurement campaign. Meteor. Atmos. Phys., 103, 237250, https://doi.org/10.1007/s00703-008-0327-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Franceschi, M., D. Zardi, M. Tagliazucca, and F. Tampieri, 2009: Analysis of second order moments in the surface layer turbulence in an Alpine valley. Quart. J. Roy. Meteor. Soc., 135, 17501765, https://doi.org/10.1002/qj.506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., M. Kossmann, J. C. Knievel, L. Giovannini, E. D. Gutmann, and D. Zardi, 2018: Meteorological applications benefiting from an improved understanding of atmospheric exchange processes over mountains. Atmosphere, 9, 371, https://doi.org/10.3390/atmos9100371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickerson, M. H., and P. H. Gudiksen, 1983: Atmospheric studies in complex terrain. Tech. Progress Rep. FY 1979–FY 1983, 367 pp.

  • Doran, J. C., 1996: The influence of canyon winds on flow fields near Colorado’s Front Range. J. Appl. Meteor., 35, 587600, https://doi.org/10.1175/1520-0450(1996)035<0587:TIOCWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., and T. W. Horst, 1985: An evaluation of Gaussian plume-depletion models with dual-tracer field measurements. Atmos. Environ., 19, 939951, https://doi.org/10.1016/0004-6981(85)90239-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., J. D. Fast, and J. Horel, 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83, 537551, https://doi.org/10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., K. J. Allwine, J. E. Flaherty, K. L. Clawson, and R. G. Carter, 2007: Characteristics of puff dispersion in an urban environment. Atmos. Environ., 41, 34403452, https://doi.org/10.1016/j.atmosenv.2006.12.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dosio, A., S. Emeis, G. Graziani, W. Junkermann, and A. Levy, 2001: Assessing the meteorological conditions of a deep Italian Alpine valley system by means of a measuring campaign and simulations with two models during a summer smog episode. Atmos. Environ., 35, 54415454, https://doi.org/10.1016/S1352-2310(01)00285-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R., 1985: Metropolitan Tracer Experiment (METREX). NOAA Tech. Memo. ERL ARL- 140, 85, 102 pp.

  • Draxler, R., and J. L. Heffter, Eds., 1989: Across North America Tracer Experiment (ANATEX) Volume I: Description, ground-level sampling at primary sites, and meteorology. NOAA Tech. Memo. ERL ARL-167, 83 pp., www.arl.noaa.gov/documents/reports/arl-167.pdf.

    • Search Google Scholar
    • Export Citation
  • Eastman, J. L., R. A. Pielke, and W. A. Lyons, 1995: Comparison of lake-breeze model simulations with tracer data. J. Appl. Meteor., 34, 13981418, https://doi.org/10.1175/1520-0450(1995)034<1398:COLBMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emberlin, J. C., 1981: A sulphur hexafluoride tracer experiment from a tall stack over complex topography in a coastal area of Southern England. Atmos. Environ., 15, 15231530, https://doi.org/10.1016/0004-6981(81)90134-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falocchi, M., L. Giovannini, M. de Franceschi, and D. Zardi, 2019: A method to determine the characteristic time scales of quasi-isotropic surface-layer turbulence over complex terrain: A case-study in the Adige Valley (Italian Alps). Quart. J. Roy. Meteor. Soc., 145, 495512, https://doi.org/10.1002/qj.3444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falocchi, M., W. Tirler, L. Giovannini, E. Tomasi, G. Antonacci, and D. Zardi, 2020: A dataset of tracer concentrations and meteorological observations from the Bolzano Tracer EXperiment (BTEX) to characterize pollutant dispersion processes in an Alpine valley. Earth Syst. Sci. Data, 12, 277291, https://doi.org/10.5194/essd-12-277-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falocchi, M., D. Zardi, and L. Giovannini, 2021: Meteorological normalization of NO2 concentrations in the Province of Bolzano (Italian Alps). Atmos. Environ., 246, 118048, https://doi.org/10.1016/j.atmosenv.2020.118048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and L. S. Darby, 2004: An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using Doppler lidar measurements during VTMX 2000. J. Appl. Meteor., 43, 420436, https://doi.org/10.1175/1520-0450(2004)043<0420:AEOMMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., K. J. Allwine, R. N. Dietz, K. L. Clawson, and J. C. Torcolini, 2006: Dispersion of perfluorocarbon tracers within the Salt Lake Valley during VTMX 2000. J. Appl. Meteor. Climatol., 45, 793812, https://doi.org/10.1175/JAM2371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferber, G. J., K. Telegadas, J. L. Heffter, C. R. Dickson, R. N. Dietz, and P. W. Krey, 1981: Demonstration of a long-range atmospheric tracer system using perfluorocarbons. NOAA Tech. Memo. ERL ARL- 101, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Ferber, G. J., and et al. , 1986: Cross-Appalachian tracer experiment (CAPTEX ‘83) final report. NOAA Tech. Memo. ERL ARL- 142, 60 pp.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J., and et al. , 2015: The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Amer. Meteor. Soc., 96, 1945–1967, https://doi.org/10.1175/BAMS-D-13-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrero, E., and N. Colonna, 2006: Nonlocal treatment of the buoyancy-shear-driven boundary layer. J. Atmos. Sci., 63, 26532662, https://doi.org/10.1175/JAS3789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrero, E., and M. Racca, 2004: The role of the non-local transport in modelling the shear-driven atmospheric boundary layer. J. Atmos. Sci., 61, 14341445, https://doi.org/10.1175/1520-0469(2004)061<1434:TROTNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrero, E., S. Trini Castelli, and D. Anfossi, 2003: Turbulence fields for atmospheric dispersion models in horizontally non-homogeneous conditions. Atmos. Environ., 37, 23052315, https://doi.org/10.1016/S1352-2310(03)00179-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrero, E., S. Alessandrini, and F. Vandenberghe, 2018: Assessment of planetary-boundary layer schemes in the weather research and forecasting model within and above an urban canopy layer. Bound.-Layer Meteor., 168, 289319, https://doi.org/10.1007/s10546-018-0349-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, F., I. Bischoff-Gauß, N. Kalthoff, and G. Adrian, 2000: Modeling of the transport and diffusion of a tracer in the Freiburg-Schauinsland area. J. Geophys. Res., 105, 15991610, https://doi.org/10.1029/1999JD900911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flaherty, J. E., B. Lamb, K. J. Allwine, and E. Allwine, 2007: Vertical tracer concentration profiles measured during the joint urban 2003 dispersion study. J. Appl. Meteor. Climatol., 46, 2019–2037, https://doi.org/10.1175/2006JAMC1305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flesch, T. K., J. D. Wilson, L. A. Harper, B. P. Crenna, and R. R. Sharpe, 2004: Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. J. Appl. Meteor., 43, 487502, https://doi.org/10.1175/1520-0450(2004)043<0487:DGEFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuquay, J. J., C. L. Simpson, and W. T. Hinds, 1964: Prediction of environmental exposures from sources near the ground based on Hanford experimental data. J. Appl. Meteor., 3, 761770, https://doi.org/10.1175/1520-0450(1964)003<0761:POEEFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., G. Antonacci, D. Zardi, L. Laiti, and L. Panziera, 2014a: Sensitivity of simulated wind speed to spatial resolution over complex terrain. Energy Procedia, 59, 323329, https://doi.org/10.1016/j.egypro.2014.10.384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., D. Zardi, M. de Franceschi, and F. Chen, 2014b: Numerical simulations of boundary-layer processes and urban-induced alterations in an Alpine valley. Int. J. Climatol., 34, 11111131, https://doi.org/10.1002/joc.3750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., L. Laiti, D. Zardi, and M. de Franceschi, 2015: Climatological characteristics of the Ora del Garda wind in the Alps. Int. J. Climatol., 35, 41034115, https://doi.org/10.1002/joc.4270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., L. Laiti, S. Serafin, and D. Zardi, 2017: The thermally driven diurnal wind system of the Adige Valley in the Italian Alps. Quart. J. Roy. Meteor. Soc., 143, 23892402, https://doi.org/10.1002/qj.3092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giovannini, L., E. Ferrero, T. Karl, M. W. Rotach, C. Staquet, S. Trini Castelli, and D. Zardi, 2020: Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modelling. Atmosphere, 11, 646, https://doi.org/10.3390/atmos11060646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gohm, A., and et al. , 2009: Air pollution transport in an alpine valley: Results from airborne and ground-based observations. Bound.-Layer Meteor ., 131, 441463, https://doi.org/10.1007/s10546-009-9371-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, M. C., 1999: The project MOHAVE tracer study: Study design, data quality, and overview of results. Atmos. Environ., 33, 19551968, https://doi.org/10.1016/S1352-2310(98)00126-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and E. Lyck, 1980: Elevated source SF6-tracer dispersion experiments in the Copenhagen area: Preliminary results II. Proc. Seminar on Radioactive Releases and their Dispersion in the Atmosphere Following a Hypothetical Reactor Accident, Roskilde, Denmark, Commission of the European Communities, 905924.

    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and E. Lyck, 1984: Atmospheric dispersion from elevated sources in an urban area: Comparison between tracer experiments and model calculations. J. Climate Appl. Meteor., 23, 651660, https://doi.org/10.1175/1520-0450(1984)023<0651:ADFESI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S. E., and E. Lyck,, 2002: The Copenhagen tracer experiments: Reporting of measurements. Risø-R-1054(rev.1)(EN), Riso National Laboratory, 75 pp., http://orbit.dtu.dk/files/7726795/ris_r_1054_rev1.pdf.

    • Search Google Scholar
    • Export Citation
  • Gudiksen, P. H., and D. L. Shearer, 1989: The dispersion of atmospheric tracers in nocturnal drainage flows. J. Appl. Meteor., 28, 602608, https://doi.org/10.1175/1520-0450(1989)028<0602:TDOATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haagenson, P. L., Y. Kuo, M. Syumanich, and N. L. Seaman, 1987: Tracer verification of trajectory models. J. Climate Appl. Meteor., 26, 410426, https://doi.org/10.1175/1520-0450(1987)026<0410:TVOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haagenson, P. L., K. Gao, and Y. Kuo, 1990: Evaluation of meteorological analyses, simulations, and long-range transport calculations using ANATEX surface tracer data. J. Appl. Meteor., 29, 12681283, https://doi.org/10.1175/1520-0450(1990)029<1268:EOMASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., 1982: Applications in Air Pollution Modeling. Atmospheric Turbulence and Air Pollution Modelling: A Course Held in The Hague, 21–25 September 1981 ,F. T. M. Nieuwstadt and H. van Dop, Eds., Springer, 275310.

    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., B. A. Egan, C. J. Vaudo, and A. J. Curreri, 1984: A complex terrain dispersion model for regulatory applications at the Westvaco Luke Mill. Atmos. Environ., 18, 685699, https://doi.org/10.1016/0004-6981(84)90255-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S. R., J. Weil, and R. Paine, 1986: Plume model development and evaluation. Tech. Rep. D034-500, Electric Power Research Institute, 550 pp.

    • Search Google Scholar
    • Export Citation
  • Haugen, D. A., Ed., 1959: Project Prairie Grass, a field program in diffusion. Vol. III, Geophysical Research Papers 59, Air Force Cambridge Research Center Rep. AFCRC-TR- 58-235, 673 pp., NTIS PB 161 101.

    • Search Google Scholar
    • Export Citation
  • Haugen, D. A., and J. J. Fuquay, Eds., 1963: The ocean breeze and dry gulch diffusion programs, Vol. I. Air Force Cambridge Research Laboratories and Hanford Atomic Products Operations Rep. HW- 78435, 240 pp.

    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., J. F. Schubert, and G. A. Mead, 1984: Atlantic Coast Unique Regional Atmospheric Tracer Experiment (ACURATE). NOAA Tech. Memo. ERL ARL- 130, 15 pp.

    • Search Google Scholar
    • Export Citation
  • Hegarty, J., and et al. , 2013: Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases. J. Appl. Meteor. Climatol., 52, 26232637, https://doi.org/10.1175/JAMC-D-13-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 1985: Behavior of turbulence statistics in the convective boundary layer. J. Climate Appl. Meteor., 24, 607614, https://doi.org/10.1175/1520-0450(1985)024<0607:BOTSIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, M. A., J. Cuxart, and D. Martínez-Villagrasa, 2019: Influence of a valley exit jet on the nocturnal atmospheric boundary layer at the foothills of the Pyrenees. Quart. J. Roy. Meteor. Soc., 145, 356375, https://doi.org/10.1002/qj.3437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, W. B., 1983: Meteorological tracer techniques for parameterizing atmospheric dispersion. J. Climate Appl. Meteor., 22, 931946, https://doi.org/10.1175/1520-0450(1983)022<0931:MTTFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalthoff, N., V. Horlacher, U. Corsmeier, A. Volz Thomas, B. Kolahgar, H. Geiß, M. Möllmann-Coers, and A. Knaps, 2000: Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res., 105, 15851597, https://doi.org/10.1029/1999JD900999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koračin, D., J. Frye, and V. Isakov, 2000: A method of evaluating atmospheric models using tracer measurements. J. Appl. Meteor., 39, 201221, https://doi.org/10.1175/1520-0450(2000)039<0201:AMOEAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laiti, L., D. Zardi, M. de Franceschi, and G. Rampanelli, 2013a: Atmospheric boundary layer structures associated with the Ora del Garda wind in the Alps as revealed from airborne and surface measurements. Atmos. Res., 132–133, 473489, https://doi.org/10.1016/j.atmosres.2013.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laiti, L., D. Zardi, M. de Franceschi, and G. Rampanelli, 2013b: Residual kriging analysis of airborne measurements: Application to the mapping of atmospheric boundary-layer thermal structures in a mountain valley. Atmos. Sci. Lett., 14, 7985, https://doi.org/10.1002/asl2.420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laiti, L., D. Zardi, G. Giovannini, M. de Franceschi, and G. Rampanelli, 2014: Analysis of the diurnal development of a lake-valley circulation in the Alps based on airborne and surface measurements. Atmos. Chem. Phys., 14, 97719786, https://doi.org/10.5194/acp-14-9771-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laiti, L., L. Giovannini, D. Zardi, G. Belluardo, and D. Moser, 2018: Estimating hourly beam and diffuse solar radiation in an alpine valley: A critical assessment of decomposition models. Atmosphere, 9, 117, https://doi.org/10.3390/atmos9040117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., E. Crosman, C. D. Whiteman, J. Horel, S. Hoch, W. Brown, and T. W. Horst, 2013: The persistent cold-air pool study. Bull. Amer. Meteor. Soc., 94, 5163, https://doi.org/10.1175/BAMS-D-11-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Largeron, Y., and C. Staquet, 2016a: The atmospheric boundary layer during wintertime persistent inversions in the Grenoble valleys. Front. Earth Sci., 4, 70, https://doi.org/10.3389/feart.2016.00070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Largeron, Y., and C. Staquet, 2016b: Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos. Environ., 135, 92108, https://doi.org/10.1016/j.atmosenv.2016.03.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manca, G., 2017: GreenHouse Gases concentration-2017. European Commission, Joint Research Centre (JRC), https://data.jrc.ec.europa.eu/dataset/jrc-abcis-ghg-2017.

    • Search Google Scholar
    • Export Citation
  • Martin, D., and et al. , 2010a: Urban tracer dispersion experiment in London (DAPPLE) 2003: Field study and comparison with empirical prediction. Atmos. Sci. Lett., 11, 241248, https://doi.org/10.1002/asl.282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D., and et al. , 2010b: Urban tracer dispersion experiments during the second DAPPLE field campaign in London 2004. Atmos. Environ., 44, 30433052, https://doi.org/10.1016/j.atmosenv.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, D., K. F. Petersson, and D. E. Shallcross, 2011: The use of cyclic perfluoroalkanes and SF6 in atmospheric dispersion experiments. Quart. J. Roy. Meteor. Soc., 137, 20472063, https://doi.org/10.1002/qj.881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestayer, P. G., and et al. , 2011: Fluxsap 2010 experimental campaign over a heterogeneous urban zone, Part 1: heat and vapour flux assessment. 14th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Kos Island, Greece, CCSD, 433437.

    • Search Google Scholar
    • Export Citation
  • Min, I. A., and et al. , 2002: Measurement and analysis of puff dispersion above the atmospheric boundary layer using quantitative imagery. J. Appl. Meteor., 41, 10271041, https://doi.org/10.1175/1520-0450(2002)041<1027:MAAOPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, M. D., and R. A. Pielke, 1996a: Evaluation of a mesoscale atmospheric dispersion modeling system with observations from the 1980 Great Plains mesoscale tracer field experiment. Part I: Datasets and meteorological simulations. J. Appl. Meteor., 35, 281307, https://doi.org/10.1175/1520-0450(1996)035<0281:EOAMAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, M. D., and R. A. Pielke, 1996b: Evaluation of a mesoscale atmospheric dispersion modeling system with observations from the 1980 Great Plains mesoscale tracer field experiment. Part II: Dispersion simulations. J. Appl. Meteor., 35, 308329, https://doi.org/10.1175/1520-0450(1996)035<0308:EOAMAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, D. R., and N. E. Bowne, 1988: Urban power plant plume studies. EPRI Rep. EA-5468, Research Project 2736-1, Electric Power Research Institute, 40 pp.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor ., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, F., and A. F. Stein, 2017: A long-term WRF meteorological archive for dispersion simulations: Application to controlled tracer experiments. J. Appl. Meteor. Climatol., 56, 22032220, https://doi.org/10.1175/JAMC-D-16-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ngan, F., A. Stein, and R. Draxler, 2015: Inline coupling of WRF–HYSPLIT: Model development and evaluation using tracer experiments. J. Appl. Meteor. Climatol., 54, 11621176, https://doi.org/10.1175/JAMC-D-14-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nickola, P. W., 1977: The Hanford 67-series: A volume of atmospheric field diffusion measurements. Rep. PNL-2433, Battelle Pacific Northwest Laboratories, 454 pp., https://doi.org/10.2172/5215934.

    • Search Google Scholar
    • Export Citation
  • Nickola, P. W., J. V. Ramsdell, C. S. Glantz, and R. E. Kerns, 1983: Hanford atmospheric dispersion data: 1960 through June 1967. Rep. NUREG/CR-3456, PNL-4814, Battelle Pacific Northwest Laboratories, 683 pp., https://doi.org/10.2172/5360676.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F., 1984: Some aspects of the turbulent stable boundary layer. Bound.-Layer Meteor ., 30, 3155, https://doi.org/10.1007/BF00121948.

  • Nieuwstadt, F. T. M., and H. van Duuren, 1979: Dispersion experiments with SF6 from the 213 m high meteorological mast at Cabauw in the Netherlands. Proc. Fourth Symp. on Turbulence, Diffusion and Air Pollution, Reno, Nevada, Amer. Meteor. Soc., 34–40.

    • Search Google Scholar
    • Export Citation
  • Nodop, K., R. Connolly, and F. Girardi, 1998: The field campaigns of the European Tracer Experiment (ETEX): Overview and results. Atmos. Environ., 32, 40954108, https://doi.org/10.1016/S1352-2310(98)00190-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orgill, M. M., 1989: Early morning ventilation of a gaseous tracer from a mountain valley. J. Appl. Meteor., 28, 636651, https://doi.org/10.1175/1520-0450(1989)028<0636:EMVOAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paci, A., and et al. , 2016: La campagne Passy-2015: Dynamique atmosphérique et qualité de l’air dans la vallée de l’Arve [The Passy-2015 field experiment: Atmospheric dynamics and air quality in the Arve River Valley]. Pollution atmosphérique, 231232, https://doi.org/10.4267/pollution-atmospherique.5903.

    • Search Google Scholar
    • Export Citation
  • Pamperin, H., and G. Stilke, 1985: Nächtliche Grenzschicht und LLJ im Alpenvorland nahe dem Inntalausgang [Nocturnal boundary layer and low level jet near the Inn Valley exit]. Meteor. Rundsch., 38, 145156.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H., H. Tennekes, D. Lenschow, and J. Wyngaard, 1977: The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound.-Layer Meteor., 11, 355361, https://doi.org/10.1007/BF02186086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pennell, W. T., R. N. Lee, J. M. Hubbe, R. M. Enlich, M. A. Baugh, K. C. Nitz and W. B. Johnson, 1987: SCCCAMP Mesoscale Tracer Studies. Final Rep. SRI Proj. 8655, SCCCAMP Contract 126.53-18-SRI, SRI International, 115 pp

    • Search Google Scholar
    • Export Citation
  • Pitchford, M., M. C. Green, and R. J. Farber, 1997: Characterization of regional transport and dispersion using Project MOHAVE tracer data. Proc. Visual Air Quality: Aerosols and Global Radiation Balance, Bartlett, NH, Air and Waste Management Association, 181–200.

    • Search Google Scholar
    • Export Citation
  • Quimbayo-Duarte, J. A., C. Staquet, C. Chemel, and A. Arduini, 2019a: Impact of along-valley orographic variations on the dispersion of passive tracers in a stable atmosphere. Atmosphere, 10, 225, https://doi.org/10.3390/atmos10040225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quimbayo-Duarte, J. A., C. Staquet, C. Chemel, and A. Arduini, 2019b: Dispersion of tracers in the stable atmosphere of a valley opening on a plain. Bound.-Layer Meteor ., 172, 291315, https://doi.org/10.1007/s10546-019-00439-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragazzi, M., W. Tirler, G. Angelucci, D. Zardi, and E. C. Rada, 2013: Management of atmospheric pollutants from waste incineration processes: The case of Bozen. Waste Manage. Res., 31, 235240, https://doi.org/10.1177/0734242X12472707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigby, M., and et al. , 2010: History of atmospheric SF6 from 1973 to 2008. Atmos. Chem. Phys., 10, 10 30510 320, https://doi.org/10.5194/acp-10-10305-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and D. Zardi, 2007: On the boundary–layer structure over highly complex terrain: Key findings from MAP. Quart. J. Roy. Meteor. Soc., 133, 937948, https://doi.org/10.1002/qj.71.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., and et al. , 2004a: Turbulence structure and exchange processes in an alpine valley: The Riviera Project. Bull. Amer. Meteor. Soc., 85, 13671386, https://doi.org/10.1175/BAMS-85-9-1367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M. W., S. E. Gryning, E. Batchvarova, A. Christen, and R. Vogt, 2004b: Pollutant dispersion close to an urban surface–The BUBBLE tracer experiment. Meteor. Atmos. Phys., 87, 3956, https://doi.org/10.1007/s00703-003-0060-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabatier, T., A. Paci, C. Lac, G. Canut, Y. Largeron, and V. Masson, 2020a: Semi-idealized simulations of wintertime flows and pollutant transport in an Alpine valley: Origins of local circulations (Part I). Quart. J. Roy. Meteor. Soc., 146, 807826, https://doi.org/10.1002/qj.3727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabatier, T., and et al. , 2020b: Semi-idealized simulations of wintertime flows and pollutant transport in an alpine valley. Part II: Passive tracer tracking. Quart. J. Roy. Meteor. Soc., 146, 827845, https://doi.org/10.1002/qj.3710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schicker, I., and P. Seibert, 2009: Simulation of the meteorological conditions during a winter smog episode in the Inn Valley. Meteor. Atmos. Phys., 103, 211222, https://doi.org/10.1007/s00703-008-0346-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scire, J., D. Strimaitis, and R. Yamartino, 2000: A user’s guide for the CALPUFF Dispersion Model (version 5.0). Tech. Rep., Earth Tech, Inc., 521 pp.

    • Search Google Scholar
    • Export Citation
  • Serafin, S., and et al. , 2018: Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere, 9, 102, https://doi.org/10.3390/atmos9030102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., and et al. , 2020: Multi-scale transport and exchange processes in the atmosphere over mountains: Programme and experiment. Innsbruck University Press, 44 pp., https://doi.org/10.15203/99106-003-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivertsen, B., 1988: Tracer experiments to estimate diffusive leakages and to verify dispersion models. Environmental Meteorology, Springer, 255268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivertsen, B., and J. S. Irwin, 1987: Data Summary of 1985 SF6 Tracer Experiments at Andorra (Teruel) Power Plant. Tech. Rep. NILU OR 49/85, Norwegian Institute for Air Research, 74 pp.

    • Search Google Scholar
    • Export Citation
  • Sivertsen, B., and J. S. Irwin, 1996: Tracer gas experiment to verify the dispersion from a tall stack. Proc. Ninth Joint Conf. on Applications of Air Pollution Meteorology with A&WMA, Atlanta, GA, Amer. Meteor. Soc., 4143.

    • Search Google Scholar
    • Export Citation
  • Stewart, J. Q., C. D. Whiteman, W. J. Steenburgh, and X. Bian, 2002: A climatological study of thermally driven wind systems of the US Intermountain West. Bull. Amer. Meteor. Soc., 83, 699708, https://doi.org/10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stiperski, I., M. Calaf, and M. W. Rotach, 2019: Scaling, anisotropy, and complexity in near-surface atmospheric turbulence. J. Geophys. Res. Atmos., 124, 14281448, https://doi.org/10.1029/2018JD029383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strimaitis, D. G., G. E. Moore, and S. G. Douglas, 1991: Analysis of tracer data collected during the SCCCAMP 1985 intensive measurement periods. J. Appl. Meteor., 30, 674706, https://doi.org/10.1175/1520-0450(1991)030<0674:AOTDCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., S. F. Parker, D. S. Henn, and W. S. Lewellen, 1993: Numerical simulation of ANATEX tracer data using a turbulence closure model for long-range dispersion. J. Appl. Meteor., 32, 929947, https://doi.org/10.1175/1520-0450(1993)032<0929:NSOATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Telegadas, K., G. J. Ferber, and R. R. Draxler, 1980: Measured weekly twice-daily krypton-85 surface air concentrations within 150 km of the Savannah River Plant (March 1975 through September 1977): Final report. NOAA Tech. Memo. ERL ARL- 80, 97 pp.

    • Search Google Scholar
    • Export Citation
  • Tinarelli, G., and et al. , 1994: Lagrangian particle simulation of tracer dispersion in the lee of a schematic two dimensional hill. J. Appl. Meteor., 33, 744756, https://doi.org/10.1175/1520-0450(1994)033<0744:LPSOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tinarelli, G., D. Anfossi, S. Trini Castelli, M. Bider, and E. Ferrero, 2000: A new high performance version of the Lagrangian particle dispersion model spray, some case studies. Air Pollution Modeling and Its Application XIII, S.-E. Gryning and E. Batchvarova, Eds., Springer, 499507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, E., L. Giovannini, D. Zardi, and M. de Franceschi, 2017: Optimization of Noah and Noah_MP WRF land surface schemes in snow-melting conditions over complex terrain. Mon. Wea. Rev., 145, 47274745, https://doi.org/10.1175/MWR-D-16-0408.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, E., and et al. , 2019: Turbulence parameterizations for dispersion in sub-kilometer horizontally non-homogeneous flows. Atmos. Res., 228, 122136, https://doi.org/10.1016/j.atmosres.2019.05.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trini Castelli, S., E. Ferrero, D. Anfossi, and R. Ying, 1999: Comparison of turbulence closure models over a schematic valley in a neutral boundary layer. Proc. 13th Symp. on Boundary Layers and Turbulence, Dallas, TX, Amer. Meteor. Soc., 601604.

    • Search Google Scholar
    • Export Citation
  • Trini Castelli, S., E. Ferrero, and D. Anfossi, 2001: Turbulence closures in neutral boundary layer over complex terrain. Bound.-Layer Meteor ., 100, 405419, https://doi.org/10.1023/A:1019208518127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trini Castelli, S., G. Belfiore, D. Anfossi, E. Elampe, and M. Clemente, 2011: Modelling the meteorology and traffic pollutant dispersion in highly complex terrain: The ALPNAP alpine space project. Int. J. Environ. Pollut., 44, 235243, https://doi.org/10.1504/IJEP.2011.038423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van dop, H., and et al. , 1998: ETEX: A European tracer experiment; observations, dispersion modelling and emergency response. Atmos. Env., 32, 40894094, https://doi.org/10.1016/S1352-2310(98)00248-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varvayanni, M., J. G. Bartzis, N. Catsaros, P. Deligianni, and C. E. Elderkin, 1997: Simulation of nocturnal drainage flows enhanced by deep canyons: The Rocky Flats case. J. Appl. Meteor., 36, 775791, https://doi.org/10.1175/1520-0450-36.6.775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weil, J. C., R. I. Sykes, and A. Venkatram, 1992: Evaluating air quality models: Review and outlook. J. Appl. Meteor., 31, 11211145, https://doi.org/10.1175/1520-0450(1992)031<1121:EAQMRA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 1989: Morning transition tracer experiments in a deep narrow valley. J. Appl. Meteor., 28, 626635, https://doi.org/10.1175/1520-0450(1989)028<0626:MTTEIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, 355 pp.

  • Wilkerson, G., 1991: SF6 tracer studies of the Lake Michigan Ozone study 1991 summer field program. NAWC Rep. AQ 91-23, 186 pp.

  • Wood, C. R., and et al. , 2009: Dispersion experiments in central London: The 2007 DAPPLE project. Bull. Amer. Meteor. Soc., 90, 955970, https://doi.org/10.1175/2009BAMS2638.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2004: A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations. Meteor. Atmos. Phys., 87, 241256, https://doi.org/10.1007/s00703-003-0056-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2008: The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley. Meteor. Atmos. Phys., 105, 3753, https://doi.org/10.1007/s00703-009-0030-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting – Recent Progress and Current Challenges, F. K. Chow et al. , Eds., Springer, 35119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmermann, H., 1995: Field phase report of the TRACT field measurement campaign. EUROTRAC International Scientific Secretariat, 205 pp., https://www.osti.gov/etdeweb/biblio/221702.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 0
Full Text Views 512 512 61
PDF Downloads 257 257 43

The Bolzano Tracer Experiment (BTEX)

View More View Less
  • 1 Atmospheric Physics Group, Department of Civil Environmental and Mechanical Engineering, and Center Agriculture Food Environment, University of Trento, Trento, Italy
  • | 2 CISMA s.r.l., Bolzano, Italy
  • | 3 Atmospheric Physics Group, Department of Civil Environmental and Mechanical Engineering, University of Trento, Trento, Italy
  • | 4 Eco-Research s.r.l., Bolzano, Italy
  • | 5 CISMA s.r.l., Bolzano, Italy
  • | 6 University of Eastern Piedmont, Alessandria, Italy
  • | 7 National Center for Atmospheric Research, Boulder, Colorado
  • | 8 National Center for Atmospheric Research, Boulder, Colorado, and Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The paper describes the observational and modeling efforts performed under the Bolzano Tracer Experiment (BTEX). BTEX focused on the basin surrounding the city of Bolzano, at the junction of three tributary valleys on the southern side of the Alps, to characterize the ground-level impact of pollutants emitted by a waste incinerator close to the city, and atmospheric factors controlling dispersion processes in the whole basin, under different winter weather situations. As part of the experiment, two controlled releases of a passive gas tracer (sulfur hexafluoride, SF6) were performed through the stack of the incinerator on 14 February 2017 at two different times, starting respectively at 0700 and 1245 LST, representative of distinct phases of the daily cycle. Samples of ambient air were collected at target sites, and later analyzed using a mass spectrometer, allowing a detectability limit down to 30 ppt. Meanwhile, meteorological conditions were continuously monitored by means of a high-resolution, nonconventional network of ground-based instruments, including 15 weather stations, one temperature profiler, one sodar, and one Doppler wind lidar. Data from the above measurements represent one of the rare examples of integrated datasets available to the community for the characterization of dispersion processes in a typical mountainous environment. In particular, they offered a reference benchmark for testing and calibrating a series of combined numerical modeling suites for weather prediction and pollutant dispersion simulation in such a complex terrain, as shown in the paper.

©2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Dino Zardi, dino.zardi@unitn.it

Abstract

The paper describes the observational and modeling efforts performed under the Bolzano Tracer Experiment (BTEX). BTEX focused on the basin surrounding the city of Bolzano, at the junction of three tributary valleys on the southern side of the Alps, to characterize the ground-level impact of pollutants emitted by a waste incinerator close to the city, and atmospheric factors controlling dispersion processes in the whole basin, under different winter weather situations. As part of the experiment, two controlled releases of a passive gas tracer (sulfur hexafluoride, SF6) were performed through the stack of the incinerator on 14 February 2017 at two different times, starting respectively at 0700 and 1245 LST, representative of distinct phases of the daily cycle. Samples of ambient air were collected at target sites, and later analyzed using a mass spectrometer, allowing a detectability limit down to 30 ppt. Meanwhile, meteorological conditions were continuously monitored by means of a high-resolution, nonconventional network of ground-based instruments, including 15 weather stations, one temperature profiler, one sodar, and one Doppler wind lidar. Data from the above measurements represent one of the rare examples of integrated datasets available to the community for the characterization of dispersion processes in a typical mountainous environment. In particular, they offered a reference benchmark for testing and calibrating a series of combined numerical modeling suites for weather prediction and pollutant dispersion simulation in such a complex terrain, as shown in the paper.

©2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Dino Zardi, dino.zardi@unitn.it
Save