• Ahn, S., 2019: Wave energy resource characterization and classification for the United States & numerical simulation of coastal circulation near Point Sal, California. Ph.D. thesis, Georgia Institute of Technology, 192 pp.

    • Search Google Scholar
    • Export Citation
  • Allen, J. S., and et al. , 1983: Physical oceanography of continental shelves. Rev. Geophys., 21, 11491181, https://doi.org/10.1029/RG021i005p01149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. M., J. A. Simeonov, J. Calantoni, M. T. Stacey, and E. A. Variano, 2018: Turbulence in the presence of internal waves in the bottom boundary layer of the California inner shelf. Ocean Dyn ., 68, 627644, https://doi.org/10.1007/s10236-018-1147-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aristizábal, M. F., M. R. Fewings, and L. Washburn, 2017: Effects of the relaxation of upwelling-favorable winds on the diurnal and semidiurnal water temperature fluctuations in the Santa Barbara channel, California. J. Geophys. Res. Oceans, 122, 79587977, https://doi.org/10.1002/2017JC013199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auad, G., M. C. Hendershott, and C. D. Winant, 1998: Wind-induced currents and bottom-trapped waves in the Santa Barbara channel. J. Phys. Oceanogr., 28, 85102, https://doi.org/10.1175/1520-0485(1998)028<0085:WICABT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and S. J. Lentz, 2002: The inner shelf response to wind-driven upwelling and downwelling. J. Phys. Oceanogr., 32, 21712193, https://doi.org/10.1175/1520-0485(2002)032<2171:TISRTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, M. J., T. M. Scott, P. E. Russell, and G. Masselink, 2013: Rip current prediction: Development, validation, and evaluation of an operational tool. J. Coastal Res., 29, 283300, https://doi.org/10.2112/JCOASTRES-D-12-00093.1.

    • Search Google Scholar
    • Export Citation
  • Bassin, C. J., L. Washburn, M. Brzezinski, and E. McPhee-Shaw, 2005: Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the southern California Bight. Geophys. Res. Lett., 32, L12604, https://doi.org/10.1029/2005GL023017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beardsley, R., and S. Lentz, 1987: The coastal ocean dynamics experiment collection: An introduction. J. Geophys. Res., 92, 14551463, https://doi.org/10.1029/JC092iC02p01455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., J. N. Moum, J. A. Colosi, J. A. Lerczak, and J. M. McSweeney, 2020: Turbulence asymmetries in bottom boundary layer velocity pulses associated with onshore-propagating nonlinear internal waves. J. Phys. Oceanogr., 50, 23732391, https://doi.org/10.1175/JPO-D-19-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., and et al. , 2021a: Saturation of the internal tide over the inner continental shelf. Part I: Observations. J. Phys. Oceanogr ., https://doi.org/10.1175/JPO-D-20-0264.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., and et al. , 2021b: Saturation of the internal tide over the inner continental shelf. Part II: Parameterization. J. Phys. Oceanogr., in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boehm, A. B., N. S. Ismail, L. M. Sassoubre, and E. A. Andruszkiewicz, 2017: Oceans in peril: Grand challenges in applied water quality research for the 21st century. Environ. Eng. Sci., 34, 315, https://doi.org/10.1089/ees.2015.0252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, https://doi.org/10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, D., D. E. Kelley, and P. S. Galbraith, 2008: Turbulence and boluses on an internal beach. J. Mar. Res., 66, 563588, https://doi.org/10.1357/002224008787536835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruneau, N., P. Bonneton, B. Castelle, and R. Pedreros, 2011: Modeling rip current circulations and vorticity in a high-energy mesotidal-macrotidal environment. J. Geophys. Res., 116, C07026, https://doi.org/10.1029/2010JC006693.

    • Search Google Scholar
    • Export Citation
  • Butman, B., P. S. Alexander, A. Scotti, R. C. Beardsley, and S. P. Anderson, 2006: Large internal waves in Massachusetts Bay transport sediments offshore. Cont. Shelf Res., 26, 20292049, https://doi.org/10.1016/j.csr.2006.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butman, C., 1994: CoOP: Coastal Ocean Processes study interdisciplinary approach, new technology to determine coupled biological, physical, geological processes affecting larval transport on inner shelf. Sea Technol ., 50, 4449.

    • Search Google Scholar
    • Export Citation
  • Cairns, J., 1967: Asymmetry of internal tidal waves in shallow coastal waters. J. Geophys. Res., 72, 35633565, https://doi.org/10.1029/JZ072i014p03563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callendar, W., J. Klymak, and M. Foreman, 2011: Tidal generation of large sub-mesoscale eddy dipoles. Ocean Sci ., 7, 487502, https://doi.org/10.5194/os-7-487-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canals, M., G. Pawlak, and P. MacCready, 2009: Tilted baroclinic tidal vortices. J. Phys. Oceanogr., 39, 333350, https://doi.org/10.1175/2008JPO3954.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, https://doi.org/10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castelle, B., T. Scott, R. Brander, and R. McCarroll, 2016: Rip current types, circulation and hazard. Earth-Sci. Rev., 163, 121, https://doi.org/10.1016/j.earscirev.2016.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Celona, S., S. T. Merrifield, T. de Paolo, N. Kaslan, T. Cook, E. J. Terrill, and J. A. Colosi, 2021: Automated Detection, Classification, and Tracking of Internal Wave Signatures Using X-Band Radar in the Inner Shelf. J. Atmos. Oceanic Technol., 38, 789803, https://journals.ametsoc.org/view/journals/atot/38/4/JTECH-D-20-0129.1.xml.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., S. Elgar, and B. Raubenheimer, 2012: Vorticity generation by short-crested wave breaking. Geophys. Res. Lett., 39, L24604, https://doi.org/10.1029/2012GL054034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., N. Kumar, S. H. Suanda, T. M. Freismuth, and J. H. MacMahan, 2018: Statistics of internal tide bores and internal solitary waves observed on the inner continental shelf off Point Sal, California. J. Phys. Oceanogr., 48, 123143, https://doi.org/10.1175/JPO-D-17-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosby, S. C., B. D. Cornuelle, W. C. O’Reilly, and R. T. Guza, 2017: Assimilating global wave model predictions and deep-water wave observations in nearshore swell predictions. J. Atmos. Oceanic Technol., 34, 18231836, https://doi.org/10.1175/JTECH-D-17-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cudaback, C. N., and E. McPhee-Shaw, 2009: Diurnal-period internal waves near Point Conception, California. Estuarine Coastal Shelf Sci ., 83, 349359, https://doi.org/10.1016/j.ecss.2008.12.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cudaback, C. N., L. Washburn, and E. Dever, 2005: Subtidal inner-shelf circulation near Point Conception, California. J. Geophys. Res., 110, C10007, https://doi.org/10.1029/2004JC002608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalrymple, R. A., J. H. MacMahan, A. J. Reniers, and V. Nelko, 2011: Rip currents. Annu. Rev. Fluid Mech., 43, 551581, https://doi.org/10.1146/annurev-fluid-122109-160733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauhajre, D. P., J. C. McWilliams, and L. Renault, 2019: Nearshore Lagrangian connectivity: Submesoscale influence and resolution sensitivity. J. Geophys. Res. Oceans, 124, 51805204, https://doi.org/10.1029/2019JC014943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W., J. McWilliams, and M. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, https://doi.org/10.1175/JPO-D-13-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doglioli, A. M., A. Griffa, and M. G. Magaldi, 2004: Numerical study of a coastal current on a steep slope in presence of a cape: The case of the Promontorio di Portofino. J. Geophys. Res., 109, C12033, https://doi.org/10.1029/2004JC002422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorman, C., and C. Winant, 2000: The structure and variability of the marine atmosphere around the Santa Barbara Channel. Mon. Wea. Rev., 128, 261282, https://doi.org/10.1175/1520-0493(2000)128<0261:TSAVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., Q. Jiang, Y. Chao, and J. Farrara, 2009: High-resolution real-time modeling of the marine atmospheric boundary layer in support of the AOSN-II field campaign. Deep-Sea Res. II, 56, 8799, https://doi.org/10.1016/j.dsr2.2008.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., 2014: The generation of surfzone eddies in a strong alongshore current. J. Phys. Oceanogr., 44, 600617, https://doi.org/10.1175/JPO-D-13-051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. H. MacMahan, T. M. Freismuth, M. K. Gough, and M. Kovatch, 2020: Inner-shelf vertical and alongshore temperature variability in the subtidal, diurnal, and semidiurnal bands along the central California coastline with headlands. J. Geophys. Res. Oceans, 125, e2019JC015347, https://doi.org/10.1029/2019JC015347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fertitta, D. A., 2019: Semidiurnal internal tides in the Santa Maria basin. M.S. thesis, University of Washington, 73 pp.

  • Fewings, M. R., and S. J. Lentz, 2010: Momentum balances on the inner continental shelf at Martha’s Vineyard Coastal Observatory. J. Geophys. Res., 115, C12023, https://doi.org/10.1029/2009JC005578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., and S. J. Lentz, 2011: Summertime cooling of the shallow continental shelf. J. Geophys. Res., 116, C07015, https://doi.org/10.1029/2010JC006744.

    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., S. J. Lentz, and J. Fredericks, 2008: Observations of cross-shelf flow driven by cross-shelf winds on the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, https://doi.org/10.1175/2008JPO3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., L. Washburn, and J. C. Ohlmann, 2015: Coastal water circulation patterns around the northern Channel Islands and Point Conception, California. Prog. Oceanogr., 138, 283304, https://doi.org/10.1016/j.pocean.2015.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 2004: The vertical structure and subtidal dynamics of the inner shelf off New Jersey. J. Mar. Res., 62, 337371, https://doi.org/10.1357/0022240041446182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giddings, S. N., and et al. , 2014: Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. J. Geophys. Res. Oceans, 119, 24392461, https://doi.org/10.1002/2013JC009622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gove, J. M., and et al. , 2016: Near-island biological hotspots in barren ocean basins. Nat. Commun., 7, 10581, https://doi.org/10.1038/ncomms10581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, S. B., J. H. Kim, B. H. Jones, S. A. Jenkins, J. Wasyl, and C. Cudaback, 2005: Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J. Geophys. Res., 110, C10025, https://doi.org/10.1029/2004JC002401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimes, D. J., F. Feddersen, and N. Kumar, 2020a: Tracer exchange across the stratified inner-shelf driven by transient rip-currents and diurnal surface heat fluxes. Geophys. Res. Lett., 47, e2019GL086501, https://doi.org/10.1029/2019GL086501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimes, D. J., F. Feddersen, S. N. Giddings, and G. Pawlak, 2020b: Cross-shore deformation of a surfzone-released dye plume by an internal tide on the inner shelf. J. Phys. Oceanogr., 50, 3554, https://doi.org/10.1175/JPO-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerra, M., and J. Thomson, 2017: Turbulence measurements from five-beam acoustic Doppler current profilers. J. Atmos. Oceanic Technol., 34, 12671284, https://doi.org/10.1175/JTECH-D-16-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016a: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016b: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, M. C., R. A. Dalrymple, and I. A. Svendsen, 2002: Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res., 107, 3061, https://doi.org/10.1029/2001JC000955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, M. C., D. Honegger, and P. A. Catalan, 2014: Rip current observations via marine radar. J. Waterw. Port Coastal Ocean Eng., 140, 115124, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally-Rosendahl, K., and F. Feddersen, 2016: Modeling surfzone to inner-shelf tracer exchange. J. Geophys. Res. Oceans, 121, 40074025, https://doi.org/10.1002/2015JC011530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally-Rosendahl, K., F. Feddersen, and R. Guza, 2014: Cross-shore tracer exchange between the surfzone and inner-shelf. J. Geophys. Res. Oceans, 119, 43674388, https://doi.org/10.1002/2013JC009722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hally-Rosendahl, K., F. Feddersen, D. B. Clark, and R. Guza, 2015: Surfzone to inner-shelf exchange estimated from dye tracer balances. J. Geophys. Res. Oceans, 120, 62896308, https://doi.org/10.1002/2015JC010844.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hickey, B., E. Dobbins, and S. E. Allen, 2003: Local and remote forcing of currents and temperature in the central Southern California Bight. J. Geophys. Res., 108, 3081, https://doi.org/10.1029/2000JC000313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., X. Hong, J. D. Doyle, J. Pullen, J. Cummings, P. Martin, and M. A. Rennick, 2002: The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography, 15 (1), 8898, https://doi.org/10.5670/oceanog.2002.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horwitz, R., and S. J. Lentz, 2014: Inner-shelf response to cross-shelf wind stress: The importance of the cross-shelf density gradient in an idealized numerical model and field observations. J. Phys. Oceanogr., 44, 86103, https://doi.org/10.1175/JPO-D-13-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horwitz, R., and S. J. Lentz, 2016: The effect of wind direction on cross-shelf transport on an initially stratified inner shelf. J. Mar. Res., 74, 201227, https://doi.org/10.1357/002224016820870648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huyer, A., and P. M. Kosro, 1987: Mesoscale surveys over the shelf and slope in the upwelling region near Point Arena, California. J. Geophys. Res., 92, 16551681, https://doi.org/10.1029/JC092iC02p01655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, O., R. Simons, E. Jones, and J. Harris, 2006: Influence of seabed slope and Coriolis effects on the development of sandbanks near headlands. J. Geophys. Res., 111, C03020, https://doi.org/10.1029/2005JC002944.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, M., L. M. Chérubin, and C. B. Paris, 2011: Adaptive significance of the formation of multi-species fish spawning aggregations near submerged capes. PLOS ONE, 6, e22067, https://doi.org/10.1371/journal.pone.0022067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., 2016: The occurrence, drivers, and implications of submesoscale eddies on the Martha’s Vineyard inner shelf. J. Phys. Oceanogr., 46, 26452662, https://doi.org/10.1175/JPO-D-15-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., and S. Lentz, 2017: The importance of lateral variability on exchange across the inner shelf south of Martha’s Vineyard, MA. J. Geophys. Res. Oceans, 122, 23602381, https://doi.org/10.1002/2016JC012491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A., J. A. Barth, B. A. Grantham, B. A. Menge, and J. Lubchenco, 2005: Wind-driven inner-shelf circulation off central Oregon during summer. J. Geophys. Res., 110, C10S03, https://doi.org/10.1029/2004JC002611.

    • Search Google Scholar
    • Export Citation
  • Kirincich, A., S. J. Lentz, J. T. Farrar, and N. K. Ganju, 2013: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr., 43, 19401958, https://doi.org/10.1175/JPO-D-13-020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovatch, F. F. M., F. Feddersen, D. G. Grimes, and J. H. MacMahan, 2021: Vorticity recirculation and asymmetric generation at a small headland with broadband currents. J. Geophys. Res. Oceans, 126, e2020JC016639, https://doi.org/10.1029/2020JC016639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017a: A new offshore transport mechanism for shoreline-released tracer induced by transient rip currents and stratification. Geophys. Res. Lett., 44, 28432851, https://doi.org/10.1002/2017GL072611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017b: The effect of Stokes drift and transient rip currents on the inner shelf. Part I: No stratification. J. Phys. Oceanogr., 47, 227241, https://doi.org/10.1175/JPO-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., and F. Feddersen, 2017c: The effect of Stokes drift and transient rip currents on the inner shelf. Part II: With stratification. J. Phys. Oceanogr., 47, 243260, https://doi.org/10.1175/JPO-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., G. Voulgaris, J. C. Warner, and M. Olabarrieta, 2012: Implementation of the vortex force formalism in the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell ., 47, 6595, https://doi.org/10.1016/j.ocemod.2012.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., F. Feddersen, Y. Uchiyama, J. McWilliams, and W. O’Reilly, 2015: Midshelf to surfzone coupled ROMS–SWAN model data comparison of waves, currents, and temperature: Diagnosis of subtidal forcings and response. J. Phys. Oceanogr., 45, 14641490, https://doi.org/10.1175/JPO-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., F. Feddersen, S. Suanda, Y. Uchiyama, and J. McWilliams, 2016: Mid- to inner-shelf coupled ROMS–SWAN model–data comparison of currents and temperature: Diurnal and semidiurnal variability. J. Phys. Oceanogr., 46, 841862, https://doi.org/10.1175/JPO-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., S. H. Suanda, J. A. Colosi, K. Haas, E. Di Lorenzo, A. J. Miller, and C. A. Edwards, 2019: Coastal semidiurnal internal tidal incoherence in the Santa Maria basin, California: Observations and model simulations. J. Geophys. Res. Oceans, 124, 51585179, https://doi.org/10.1029/2018JC014891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, O. S., 1961: Observations on internal waves in shallow water. Limnol. Oceanogr., 6, 312321, https://doi.org/10.4319/lo.1961.6.3.0312.

  • Leichter, J. J., G. Shellenbarger, S. J. Genovese, and S. R. Wing, 1998: Breaking internal waves on a Florida (USA) coral reef: A plankton pump at work? Mar. Ecol. Prog. Ser., 166, 8397, https://doi.org/10.3354/meps166083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenain, L., and W. K. Melville, 2017: Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves. J. Phys. Oceanogr., 47, 21232138, https://doi.org/10.1175/JPO-D-17-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenain, L., N. M. Statom, and W. K. Melville, 2019: Airborne measurements of surface wind and slope statistics over the ocean. J. Phys. Oceanogr., 49, 27992814, https://doi.org/10.1175/JPO-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lennert-Cody, C. E., and P. J. Franks, 1999: Plankton patchiness in high-frequency internal waves. Mar. Ecol. Prog. Ser., 186, 5966, https://doi.org/10.3354/meps186059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1994: Current dynamics over the Northern California inner shelf. J. Phys. Oceanogr., 24, 24612478, https://doi.org/10.1175/1520-0485(1994)024<2461:CDOTNC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1995a: U.S. contributions to the physical oceanography of continental shelves in the early 1990’s. Rev. Geophys., 33, 12251236, https://doi.org/10.1029/95RG00177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1995b: Sensitivity of the inner-shelf circulation to the form of the eddy viscosity profile. J. Phys. Oceanogr., 25, 1928, https://doi.org/10.1175/1520-0485(1995)025<0019:SOTISC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, https://doi.org/10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., R. Guza, S. Elgar, F. Feddersen, and T. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18 20518 226, https://doi.org/10.1029/1999JC900101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., M. Fewings, P. Howd, J. Fredericks, and K. Hathaway, 2008: Observations and a model of undertow over the inner continental shelf. J. Phys. Oceanogr., 38, 23412357, https://doi.org/10.1175/2008JPO3986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., C. Winant, and M. Hendershott, 2003: Observations of the semidiurnal internal tide on the southern California slope and shelf. J. Geophys. Res., 108, 3068, https://doi.org/10.1029/2001JC001128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, J. W., and H. T. Özkan-Haller, 2009: Low-frequency characteristics of wave group–forced vortices. J. Geophys. Res., 114, C08004, https://doi.org/10.1029/2008JC004894.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, G. Voet, K. L. Zeiden, T. Shaun Johnston, M. Siegelman, S. Merrifield, and M. Merrifield, 2019: Eddy wake generation from broadband currents near Palau. J. Geophys. Res. Oceans, 124, 48914903, https://doi.org/10.1029/2019JC014945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., E. B. Thornton, and A. J. Reniers, 2006: Rip current review. Coastal Eng ., 53, 191208, https://doi.org/10.1016/j.coastaleng.2005.10.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., and et al. , 2010: Mean Lagrangian flow behavior on an open coast rip-channeled beach: A new perspective. Mar. Geol., 268, 115, https://doi.org/10.1016/j.margeo.2009.09.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mark, D. J., E. A. Spargo, J. J. Westerink, and R. A. Luettich Jr., 2004: ENPAC 2003: A tidal constituent database for eastern North Pacific Ocean. U.S. Army Engineer Research and Development Center Tech. Rep., 191 pp.

    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., G. B. Smith, and W. D. Miller, 2013: Infrared remote sensing of surf-zone eddies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 17101718, https://doi.org/10.1109/JSTARS.2013.2257695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzini, P. L., J. A. Barth, R. K. Shearman, and A. Erofeev, 2014: Buoyancy-driven coastal currents off Oregon during fall and winter. J. Phys. Oceanogr., 44, 28542876, https://doi.org/10.1175/JPO-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and et al. , 2020a: Alongshore variability of shoaling internal bores on the inner shelf. J. Phys. Oceanogr., 50, 29652981, https://doi.org/10.1175/JPO-D-20-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, J. M., and et al. , 2020b: Observations of shoaling nonlinear internal bores across the central California inner shelf. J. Phys. Oceanogr., 50, 111132, https://doi.org/10.1175/JPO-D-19-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Melton, C., L. Washburn, and C. Gotschalk, 2009: Wind relaxations and poleward flow events in a coastal upwelling system on the central California coast. J. Geophys. Res., 114, C11016, https://doi.org/10.1029/2009JC005397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., L. Lenain, D. R. Cayan, M. Kahru, J. P. Kleissl, P. F. Linden, and N. M. Statom, 2016: The Modular Aerial Sensing System. J. Atmos. Oceanic Technol., 33, 11691184, https://doi.org/10.1175/JTECH-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., and A. J. Clarke, 1986: The frictional nearshore response to forcing by synoptic scale winds. J. Phys. Oceanogr., 16, 934946, https://doi.org/10.1175/1520-0485(1986)016<0934:TFNRTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molina, L., G. Pawlak, J. Wells, S. Monismith, and M. Merrifield, 2014: Diurnal cross-shore thermal exchange on a tropical forereef. J. Geophys. Res. Oceans, 119, 61016120, https://doi.org/10.1002/2013JC009621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulton, M., S. Elgar, B. Raubenheimer, J. C. Warner, and N. Kumar, 2017: Rip currents and alongshore flows in single channels dredged in the surf zone. J. Geophys. Res. Oceans, 122, 37993816, https://doi.org/10.1002/2016JC012222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulton, M., C. C. Chickadel, and J. Thomson, 2021: Warm and cool nearshore plumes connecting the surf zone to the inner shelf. Geophys. Res. Lett., e2020GL091675, https://doi.org/10.1029/2020GL091675, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J., and J. Nash, 2008: Seafloor pressure measurements of nonlinear internal waves. J. Phys. Oceanogr., 38, 481491, https://doi.org/10.1175/2007JPO3736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J., and J. Nash, 2009: Mixing measurements on an equatorial ocean mooring. J. Atmos. Oceanic Technol., 26, 317336, https://doi.org/10.1175/2008JTECHO617.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidzieko, N., and J. Largier, 2013: Inner shelf intrusions of offshore water in an upwelling system affect coastal connectivity. Geophys. Res. Lett., 40, 54235428, https://doi.org/10.1002/2013GL056756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noyes, T. J., R. Guza, S. Elgar, and T. Herbers, 2004: Field observations of shear waves in the surf zone. J. Geophys. Res., 109, C01031, https://doi.org/10.1029/2002JC001761.

    • Search Google Scholar
    • Export Citation
  • O’Dea, A., N. Kumar, and M. Haller, 2021: Simulations of the surf zone eddy field and cross-shore exchange on a non-idealized bathymetry. J. Geophys. Res. Oceans, 126, e2020JC016619, https://doi.org/10.1029/2020JC016619.

    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., J. C. Warner, and N. Kumar, 2011: Wave-current interaction in Willapa Bay. J. Geophys. Res., 116, C12014, https://doi.org/10.1029/2011JC007387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özkan-Haller, H. T., and J. T. Kirby, 1999: Nonlinear evolution of shear instabilities of the longshore current: A comparison of observations and computations. J. Geophys. Res., 104, 25 95325 984, https://doi.org/10.1029/1999JC900104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palóczy, A., J. MacKinnon, and A. Waterhouse, 2021: Subtidal to supertidal variability of Reynolds stresses in a mid-latitude stratified inner-shelf. J. Phys. Oceanogr., 51, 10911111, https://doi.org/10.1175/JPO-D-20-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlak, G., and P. MacCready, 2002: Oscillatory flow across an irregular boundary. J. Geophys. Res., 107, 3036, https://doi.org/10.1029/2000JC000596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlak, G., P. MacCready, K. A. Edwards, and R. McCabe, 2003: Observations on the evolution of tidal vorticity at a stratified deep water headland. Geophys. Res. Lett., 30, 22342237, https://doi.org/10.1029/2003GL018092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peregrine, D., 1998: Surf zone currents. Theor. Comput. Fluid Dyn., 10, 295309, https://doi.org/10.1007/s001620050065.

  • Pineda, J., 1991: Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science, 253, 548549, https://doi.org/10.1126/science.253.5019.548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghukumar, K., G. Chang, F. Spada, C. Jones, T. Janssen, and A. Gans, 2019: Performance characteristics of “Spotter,” a newly developed real-time wave measurement buoy. J. Atmos. Oceanic Technol., 36, 11271141, https://doi.org/10.1175/JTECH-D-18-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roughan, M., A. J. Mace, J. L. Largier, S. G. Morgan, J. L. Fisher, and M. L. Carter, 2005: Subsurface recirculation and larval retention in the lee of a small headland: A variation on the upwelling shadow theme. J. Geophys. Res., 110, C10027, https://doi.org/10.1029/2005JC002898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scannell, B. D., T. P. Rippeth, J. H. Simpson, J. A. Polton, and J. E. Hopkins, 2017: Correcting surface wave bias in structure function estimates of turbulent kinetic energy dissipation rate. J. Atmos. Oceanic Technol., 34, 22572273, https://doi.org/10.1175/JTECH-D-17-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., and J. Pineda, 2004: Observation of very large and steep internal waves of elevation near the Massachusetts coast. Geophys. Res. Lett., 31, L22307, https://doi.org/10.1029/2004GL021052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanks, A. L., and W. G. Wright, 1987: Internal-wave-mediated shoreward transport of cyprids, megalopae, and gammarids and correlated longshore differences in the settling rate of intertidal barnacles. J. Exp. Mar. Biol. Ecol., 114, 113, https://doi.org/10.1016/0022-0981(87)90135-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell ., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Shroyer, E., J. Moum, and J. Nash, 2010: Vertical heat flux and lateral mass transport in nonlinear internal waves. Geophys. Res. Lett., 37, L08601, https://doi.org/10.1029/2010GL042715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Signell, R. P., and W. R. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96, 25612575, https://doi.org/10.1029/90JC02029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinnett, G., and F. Feddersen, 2019: The nearshore heat budget: Effects of stratification and surfzone dynamics. J. Geophys. Res. Oceans, 124, 82198240, https://doi.org/10.1029/2019JC015494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinnett, G., F. Feddersen, A. J. Lucas, G. Pawlak, and E. Terrill, 2018: Observations of nonlinear internal wave run-up to the surfzone. J. Phys. Oceanogr., 48, 531554, https://doi.org/10.1175/JPO-D-17-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spydell, M., and F. Feddersen, 2009: Lagrangian drifter dispersion in the surf zone: Directionally spread, normally incident waves. J. Phys. Oceanogr., 39, 809830, https://doi.org/10.1175/2008JPO3892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spydell, M., F. Feddersen, and J. Macmahan, 2019: The effect of drifter GPS errors on estimates of submesoscale vorticity. J. Atmos. Oceanic Technol., 36, 21012119, https://doi.org/10.1175/JTECH-D-19-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spydell, M., F. Feddersen, and J. Macmahan, 2021: Relative dispersion on the inner shelf: Evidence of a Batchelor regime. J. Phys. Oceanogr., 51, 519536, https://doi.org/10.1175/JPO-D-20-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., and F. Feddersen, 2015: A self-similar scaling for cross-shelf exchange driven by transient rip currents. Geophys. Res. Lett., 42, 54275434, https://doi.org/10.1002/2015GL063944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., and et al. , 2016: Wind relaxation and a coastal buoyant plume north of Pt. Conception, CA: Observations, simulations, and scalings. J. Geophys. Res. Oceans, 121, 74557475, https://doi.org/10.1002/2016JC011919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., F. Feddersen, and N. Kumar, 2017: The effect of barotropic and baroclinic tides on coastal stratification and mixing. J. Geophys. Res. Oceans, 122, 10 15610 173, https://doi.org/10.1002/2017JC013379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suanda, S. H., F. Feddersen, M. S. Spydell, and N. Kumar, 2018: The effect of barotropic and baroclinic tides on three-dimensional coastal dispersion. Geophys. Res. Lett., 45, 11 23511 246, https://doi.org/10.1029/2018GL079884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., P. MacCready, N. S. Banas, and L. F. Smedstad, 2011: A model study of the Salish Sea estuarine circulation. J. Phys. Oceanogr., 41, 11251143, https://doi.org/10.1175/2011JPO4540.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J., J. Lerczak, and J. Moum, 2016: Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors. J. Geophys. Res. Oceans, 121, 55875607, https://doi.org/10.1002/2016JC011866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., 2012: Wave breaking dissipation observed with “SWIFT” drifters. J. Atmos. Oceanic Technol., 29, 18661882, https://doi.org/10.1175/JTECH-D-12-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veneziani, M., C. Edwards, J. Doyle, and D. Foley, 2009: A central California coastal ocean modeling study: 1. Forward model and the influence of realistic versus climatological forcing. J. Geophys. Res., 114, C04015, https://doi.org/10.1029/2008JC004774.

    • Search Google Scholar
    • Export Citation
  • Walter, R. K., C. B. Woodson, P. R. Leary, and S. G. Monismith, 2014: Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Oceans, 119, 35173534, https://doi.org/10.1002/2014JC009998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, R. K., E. C. Reid, K. A. Davis, K. J. Armenta, K. Merhoff, and N. J. Nidzieko, 2017: Local diurnal wind-driven variability and upwelling in a small coastal embayment. J. Geophys. Res. Oceans, 122, 955972, https://doi.org/10.1002/2016JC012466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. B. Zambon, 2010: Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Modell ., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, S. J., P. MacCready, J. N. Moum, and J. D. Nash, 2013: Measurement of tidal form drag using seafloor pressure sensors. J. Phys. Oceanogr., 43, 11501172, https://doi.org/10.1175/JPO-D-12-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, L., and E. McPhee-Shaw, 2013: Coastal transport processes affecting inner-shelf ecosystems in the California Current System. Oceanography, 26 (3), 3443, https://doi.org/10.5670/oceanog.2013.43.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washburn, L., M. R. Fewings, C. Melton, and C. Gotschalk, 2011: The propagating response of coastal circulation due to wind relaxations along the central California coast. J. Geophys. Res., 116, C12028, https://doi.org/10.1029/2011JC007502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., Z. Li, and F. Muller-Karger, 2001: West Florida shelf response to local wind forcing: April 1998. J. Geophys. Res., 106, 31 23931 262, https://doi.org/10.1029/2000JC000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., Y. Liu, and D. A. Mayer, 2009: West Florida shelf mean circulation observed with long-term moorings. Geophys. Res. Lett., 36, L19610, https://doi.org/10.1029/2009GL040028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B. L., and K. R. Helfrich, 2013: Rapid gravitational adjustment of horizontal shear flows. J. Fluid Mech., 721, 86117, https://doi.org/10.1017/jfm.2013.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winant, C. D., 1974: Internal surges in coastal waters. J. Geophys. Res., 79, 45234526, https://doi.org/10.1029/JC079i030p04523.

  • Winant, C. D., E. P. Dever, and M. Hendershott, 2003: Characteristic patterns of shelf circulation at the boundary between central and Southern California. J. Geophys. Res., 108, 3021, https://doi.org/10.1029/2001JC001302.

    • Search Google Scholar
    • Export Citation
  • Woodson, C., 2018: The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci., 10, 421441, https://doi.org/10.1146/annurev-marine-121916-063619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodson, C., L. Washburn, J. A. Barth, D. Hoover, A. Kirincich, M. McManus, J. Ryan, and J. Tyburczy, 2009: Northern Monterey Bay upwelling shadow front: Observations of a coastally and surface-trapped buoyant plume. J. Geophys. Res., 114, C12013, https://doi.org/10.1029/2009JC005623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., F. Feddersen, S. N. Giddings, N. Kumar, and G. Gopalakrishnan, 2020: Mechanisms of mid- to outer-shelf transport of shoreline released tracers. J. Phys. Oceanogr ., 50, 18131837, https://doi.org/10.1175/JPO-D-19-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 2 0
Full Text Views 1382 1382 274
PDF Downloads 542 542 123

The Inner-Shelf Dynamics Experiment

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
  • | 2 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 3 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
  • | 4 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 5 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 6 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 7 Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 8 Department of Marine Science, University of Otago, Dunedin, New Zealand
  • | 9 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 10 Sofar Ocean Technologies, San Francisco, California
  • | 11 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
  • | 12 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 13 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 14 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 15 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
  • | 16 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 17 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 18 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 19 Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, California
  • | 20 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 21 National Research Council Research Associateship Program, Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 22 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 23 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 24 Department of Oceanography, Naval Postgraduate School, Monterey, California
  • | 25 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 26 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 27 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
  • | 28 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 29 Sofar Ocean Technologies, San Francisco, California
  • | 30 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 31 School of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon
  • | 32 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia
  • | 33 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 34 Center for Southeastern Tropical Advanced Remote Sensing, University of Miami, Miami, Florida
  • | 35 Department of Oceanography, Naval Postgraduate School, Monterey, California
  • | 36 Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington
  • | 37 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 38 Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, California
  • | 39 Naval Research Laboratory, Monterey, California
  • | 40 Department of Oceanography, Naval Postgraduate School, Monterey, California
  • | 41 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 42 Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
  • | 43 Ocean Sciences Division, U.S. Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 44 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 45 Water Power Technologies, Sandia National Laboratories, Albuquerque, New Mexico
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0281.2

Deceased

CURRENT AFFILIATIONS: Becherer—Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Palóczy—Department of Geosciences, University of Oslo, Oslo, Norway; Moulton—National Center for Atmospheric Research, Boulder, Colorado; Mieras and Suanda—Physics and Physical Oceanography Department, University of North Carolina, Wilmington, Wilmington, North Carolina;

Corresponding author: James Lerczak, jim.lerczak@oregonstate.edu

Abstract

The inner shelf, the transition zone between the surfzone and the midshelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from September–October 2017, conducted from the midshelf, through the inner shelf, and into the surfzone near Point Sal, California. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves, and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the midshelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Supplemental material: https://doi.org/10.1175/BAMS-D-19-0281.2

Deceased

CURRENT AFFILIATIONS: Becherer—Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany; Palóczy—Department of Geosciences, University of Oslo, Oslo, Norway; Moulton—National Center for Atmospheric Research, Boulder, Colorado; Mieras and Suanda—Physics and Physical Oceanography Department, University of North Carolina, Wilmington, Wilmington, North Carolina;

Corresponding author: James Lerczak, jim.lerczak@oregonstate.edu

Supplementary Materials

    • Supplemental Materials (ZIP 20.0 MB)
Save