• Aich, V., R. Holzworth, S. J. Goodman, Y. Kuleshov, C. Price, and E. Williams, 2018: Lightning: A new essential climate variable. Eos, Trans. Amer. Geophys. Union, 99, https://doi.org/10.1029/2018EO104583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessho, K., and et al. , 2015: An introduction to Himawari-8/9 – Japan’s new generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151183, https://doi.org/10.2151/jmsj.2016-009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boukabara, S. A., V. Krasnopolsky, J. Q. Stewart, E. S. Maddy, N. Shahroudi, and R. N. Hoffman, 2019: Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges. Bull. Amer. Meteor. Soc., 100, ES473ES491, https://doi.org/10.1175/BAMS-D-18-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CEOS, 2011: A geostationary satellite constellation for observing global air quality: An international path forward. Committee on Earth Observation Satellites, 41 pp., https://ceos.org/observations/documents/AC-VC_Geostationary-Cx-for-Global-AQ-final_Apr2011.pdf.

    • Search Google Scholar
    • Export Citation
  • Cliver, E. W., and W. F. Dietrich, 2013: The 1859 space weather event revisited: Limits of extreme activity. J. Space Wea. Space Climate, 3, A31, https://doi.org/10.1051/swsc/2013053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooray, V., C. Cooray, and C. J. Andrews, 2007: Lightning caused injuries in humans. J. Electrost., 65, 386394, https://doi.org/10.1016/j.elstat.2006.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Waard, J., W. P. Menzel, and J. Schmetz, 1992: Atlantic data coverage by METEOSAT-3. Bull. Amer. Meteor. Soc., 73, 977983, https://doi.org/10.1175/1520-0477(1992)073<0977:ADCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2018: TD 16 - Meteosat Data Collection and Distribution Service. Doc. EUM/OPS/DOC/08/0325, 63 pp., www-cdn.eumetsat.int/files/2020-05/pdf_td16_meteosat_data_collection_and_distribution_service.pdf.

    • Search Google Scholar
    • Export Citation
  • Goldberg, M., S. Li, S. Goodman, D. Lindsey, B. Sjoberg, and D. Sun, 2018: Contributions of operational satellites in monitoring the catastrophic floodwaters due to Hurricane Harvey. Remote Sens., 10, 1256, https://doi.org/10.3390/rs10081256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and et al. , 2012: The GOES-R proving ground accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, https://doi.org/10.1175/BAMS-D-11-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandell, J., and R. Stuhlmann, 2007: Limitations to a geostationary infrared sounder due to diffraction: The Meteosat Third Generation Infrared Sounder (MTG IRS). J. Atmos. Oceanic Technol., 24, 17401749, https://doi.org/10.1175/JTECH2055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grandell, J., and et al. , 2010: EUMETSAT Meteosat Third Generation (MTG) Lightning Imager: From mission requirements to product development. 2010 Union Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract AE21A-0257.

    • Search Google Scholar
    • Export Citation
  • Gulde, S. T., M. G. Kolm, D. J. Smith, R. Maurer, G. Bazalgette Courrèges-Lacoste, M. Sallusti, and G. Bagnasco, 2017: Sentinel 4: A geostationary imaging UVN spectrometer for air quality monitoring: status of design, performance and development, Proc. SPIE, 10563, 1056341, https://doi.org/10.1117/12.2304099.

    • Search Google Scholar
    • Export Citation
  • Kim, J., and et al. , 2019: New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Amer. Meteor. Soc., 101, E1E22, https://doi.org/10.1175/BAMS-D-18-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klaes, D., and et al. , 2007: An introduction to the EUMETSAT polar system. Bull. Amer. Meteor. Soc., 88, 10851096, https://doi.org/10.1175/BAMS-88-7-1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenig, M., and E. De Coning, 2009: The MSG global instability indices product and its use as a nowcasting tool. Wea. Forecasting, 24, 272285, https://doi.org/10.1175/2008WAF2222141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köpken, C., G. Kelly, and J.-N. Thepaut, 2004: Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact. Quart. J. Roy. Meteor. Soc., 130, 22772292, https://doi.org/10.1256/qj.02.230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., and et al. , 2012: Monitoring air quality from space: The case for the geostationary platform. Bull. Amer. Meteor. Soc., 93, 221233, https://doi.org/10.1175/BAMS-D-11-00045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lattanzio, A., and et al. , 2013: Land surface albedo from geostationary satellites A multiagency collaboration within SCOPE-CM. Bull. Amer. Meteor. Soc., 94, 205214, https://doi.org/10.1175/BAMS-D-11-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeckis, R., and P. Le Borgne, 2009: EUMETSAT geostationary satellite monitors the sea surface temperatures of the Atlantic and Indian Oceans since 2004. Environ. Res. Eng. Manage., 49 (3), 49, https://erem.ktu.lt/index.php/erem/article/view/37.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2016: A lightning parameterization for the ECMWF integrated forecasting system. Mon. Wea. Rev., 144, 30573075, https://doi.org/10.1175/MWR-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D., J. M. Straka, and C. L. Ziegler, 2001: A lightning parameterization for numerical cloud models. J. Appl. Meteor., 40, 459478, https://doi.org/10.1175/1520-0450(2001)040<0459:ALPFNC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., P. D. Watts, and M. Koenig, 2011: Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res., 102, 175190, https://doi.org/10.1016/j.atmosres.2011.06.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. LeRoy, and J. R. Walker, 2015: Probabilistic 0-1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, https://doi.org/10.1175/JAMC-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peubey, C., and A. P. McNally, 2009: Characterization of the impact of geostationary clear-sky radiances on wind analyses in a 4D-Var context. Quart. J. Roy. Meteor. Soc., 135, 18631876, https://doi.org/10.1002/qj.500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peuch, V.-H., and et al. , 2018: The use of satellite data in the Copernicus Atmosphere Monitoring Service (CAMS). 2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, 15941596, https://doi.org/10.1109/IGARSS.2018.8518698.

    • Search Google Scholar
    • Export Citation
  • Rock, B. N., D. L. Skole, and B. J. Choudhury, 1993: Monitoring vegetation change using satellite data. Vegetation Dynamics and Global Change, A. M. Solomon and H. H. Shugart, Eds., Springer, 153167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, K., G. Neukermans, Q. Vanhellemont, and D. Jolivet, 2014: Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: A review of recent results. Remote Sens. Environ., 146, 6376, https://doi.org/10.1016/j.rse.2013.07.039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., S. Crewell, R. Gelaro, P. J. Minnett, V.-H. Peuch, J. Schmetz, D. Turner, and C. Velden, 2015: Observations for global to convective scale models. Seamless Prediction of the Earth System: From Minutes to Months, G Brunet, S Jones, and P. M. Ruti, Eds., WMO 1156, World Meteorological Organization, 1536, https://library.wmo.int/doc_num.php?explnum_id=3546.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, https://doi.org/10.1175/BAMS-83-7-Schmetz-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, C., 2020: Monitoring fires with the GOES-R series. The GOES-R Series: A New Generation of Geostationary Environmental Satellites, S. J. Goodman et al. , Eds., Elsevier, 145163.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., J. Li, S. A. Ackerman, and J. J. Gurka, 2009: High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 22732292, https://doi.org/10.1175/2009JTECHA1248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681698, https://doi.org/10.1175/BAMS-D-15-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., S. S. Lindstrom, J. J. Gerth, and M. M. Gunshor, 2018: Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J. Operat. Meteor., 6, 3346, https://doi.org/10.15191/nwajom.2018.0604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., M. Lindskog, P. Unden, and N. Gustafsson, 2013: The impact of cloud-affected IR radiances on forecast accuracy of a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 139, 20812096, https://doi.org/10.1002/qj.2102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., and et al. , 2017: Observations depuis l'orbite géostationnaire avec Meteosat troisième génération (MTG). Meteorologie, 97, 5261, https://doi.org/10.4267/2042/62167.

    • Search Google Scholar
    • Export Citation
  • Timmermans, R., and et al. , 2019: Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses. Atmos. Chem. Phys., 19, 12 81112 833, https://doi.org/10.5194/acp-19-12811-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tollefson, J., 2013: Lightning network tested out in Guinea. Nature, 502, 604605, https://doi.org/10.1038/502604a.

  • Tost, H., P. Jöckel, and J. Lelieveld, 2007: Lightning and convection parameterisations – Uncertainties in global modelling. Atmos. Chem. Phys., 7, 45534568, https://doi.org/10.5194/acp-7-4553-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., 2004: Environmental satellite data utilization: Determination of wind vectors by sequential moisture analyses derived from hyperspectral IR satellite soundings. Proc. SPIE, 5548, 391397, https://doi.org/10.1117/12.559955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and S. J. Goodman, 2020: Prolific lightning and thunderstorm initiation over the Lake Victoria basin in East Africa. Mon. Wea. Rev., 148, 19711985, https://doi.org/10.1175/MWR-D-19-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., J. M. Wallace, M. L. Hutchins, and R. H. Holzworth, 2013: Highlights of a new ground-based, hourly global lightning climatology. Bull. Amer. Meteor. Soc., 94, 13811391, https://doi.org/10.1175/BAMS-D-12-00082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakeling, M., J. Eyre, S. Hughes, and I. Roulstone, 2014: Assimilation of vertical motion from simulated cloudy satellite imagery in an idealized single column model. Quart. J. Roy. Meteor. Soc., 141, 11981207, https://doi.org/10.1002/qj.2427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wapler, K., F. Harnisch, T. Pardowitz, and F. Senf, 2015: Characterisation and predictability of a strong and a weak forcing severe convective event – A multi-data approach. Meteor. Z., 24, 393410, https://doi.org/10.1127/metz/2015/0625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. X., R. R. Dickerson, Z. Wei, L. L. Strow, Y. Wang, and Q. Liang, 2017: Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett., 44, 28752884, https://doi.org/10.1002/2016GL072305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkler, K., U. Gessner, and V. Hochschild, 2017: Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: Rainfall anomalies and vegetation condition in the context of ENSO. Remote Sens., 9, 831, https://doi.org/10.3390/rs9080831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2020: Vision for the WMO integrated global observing system in 2040. WMO-1243, 38 pp., https://library.wmo.int/doc_num.php?explnum_id=10278.

  • Yang, J., Z. Zhang, C. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 16371658, https://doi.org/10.1175/BAMS-D-16-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3 3 0
Full Text Views 727 727 106
PDF Downloads 562 562 119

Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit

View More View Less
  • 1 European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany
  • | 2 European Centre for Medium Range Weather Forecasts, Reading, United Kingdom
  • | 3 Atmospheric and Environmental Research Division, Verisk Analytics GmbH, Munich, Germany
  • | 4 European Space Technology Centre, European Space Agency, Noordwijk, Netherlands
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Within the next couple of years, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) will start the deployment of its next-generation geostationary meteorological satellites. The Meteosat Third Generation (MTG) is composed of four imaging (MTG-I) and two sounding (MTG-S) platforms. The satellites are three-axis stabilized, unlike the two previous generations of Meteosat that were spin stabilized, and carry two sets of remote sensing instruments each. Hence, in addition to providing continuity, the new system will provide an unprecedented capability from geostationary orbit. The payload on the MTG-I satellites are the 16-channel Flexible Combined Imager (FCI) and the Lightning Imager (LI). The payloads on the MTG-S satellites are the hyperspectral Infrared Sounder (IRS) and a high-resolution Ultraviolet–Visible–Near-Infrared (UVN) sounder Sentinel-4/UVN, provided by the European Commission. Today, hyperspectral sounding from geostationary orbit is provided by the Chinese Fengyun-4A (FY-4A) satellite Geostationary Interferometric Infrared Sounder (GIIRS) instrument, and lightning mappers are available on FY-4A and on the National Oceanic and Atmospheric Administration (NOAA) GOES-16 and GOES-17 satellites. Consequently, the development of science and applications for these types of instruments have a solid foundation. However, the IRS, LI, and Sentinel-4/UVN are a challenging first for Europe in a geostationary orbit. The four MTG-I and two MTG-S satellites are designed to provide 20 and 15.5 years of operational service, respectively. The launch of the first MTG-I is expected at the end of 2022 and the first MTG-S roughly a year later. This article describes the four instruments, outlines products and services, and addresses the evolution of the further applications.

©2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: K. Holmlund, work4ken@gmail.com

Abstract

Within the next couple of years, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) will start the deployment of its next-generation geostationary meteorological satellites. The Meteosat Third Generation (MTG) is composed of four imaging (MTG-I) and two sounding (MTG-S) platforms. The satellites are three-axis stabilized, unlike the two previous generations of Meteosat that were spin stabilized, and carry two sets of remote sensing instruments each. Hence, in addition to providing continuity, the new system will provide an unprecedented capability from geostationary orbit. The payload on the MTG-I satellites are the 16-channel Flexible Combined Imager (FCI) and the Lightning Imager (LI). The payloads on the MTG-S satellites are the hyperspectral Infrared Sounder (IRS) and a high-resolution Ultraviolet–Visible–Near-Infrared (UVN) sounder Sentinel-4/UVN, provided by the European Commission. Today, hyperspectral sounding from geostationary orbit is provided by the Chinese Fengyun-4A (FY-4A) satellite Geostationary Interferometric Infrared Sounder (GIIRS) instrument, and lightning mappers are available on FY-4A and on the National Oceanic and Atmospheric Administration (NOAA) GOES-16 and GOES-17 satellites. Consequently, the development of science and applications for these types of instruments have a solid foundation. However, the IRS, LI, and Sentinel-4/UVN are a challenging first for Europe in a geostationary orbit. The four MTG-I and two MTG-S satellites are designed to provide 20 and 15.5 years of operational service, respectively. The launch of the first MTG-I is expected at the end of 2022 and the first MTG-S roughly a year later. This article describes the four instruments, outlines products and services, and addresses the evolution of the further applications.

©2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: K. Holmlund, work4ken@gmail.com
Save