• Adhikari, P., Y. Hong, K. R. Douglas, D. B. Kirschbaum, J. Gourley, R. Adler, and G. R. Brakenridge, 2010: A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards, 55, 405422, https://doi.org/10.1007/s11069-010-9537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Afshari, S., A. A. Tavakoly, M. A. Rajib, X. Zheng, M. L. Follum, E. Omranian, and B. M. Fekete, 2018: Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. J. Hydrol., 556, 539556, https://doi.org/10.1016/j.jhydrol.2017.11.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., L. Miolane, C. Prigent, B. Pham, E. F. Chouinard, B. Lehner, and F. Papa, 2017: A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations. J. Hydrometeor., 18, 13051325, https://doi.org/10.1175/JHM-D-16-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aires, F., C. Prigent, E. F. Chouinard, D. Yamazaki, F. Papa, and B. Lehner, 2018: Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution. Remote Sens. Environ., 216, 427441, https://doi.org/10.1016/j.rse.2018.06.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almukhtar, S., B. Migliozzi, J. Schwartz, and J. Williams, 2019: The great flood of 2019: A complete picture of a slow-motion disaster. New York Times, 11 September, www.nytimes.com/interactive/2019/09/11/us/midwest-flooding.html.

  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, https://doi.org/10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and D. A. Zelinsky, 2018: Tropical cyclone report: Hurricane Harvey (AL092017). NHC Tech. Rep., 77 pp., www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

    • Search Google Scholar
    • Export Citation
  • Bolanos, S., D. Stiff, B. Brisco, and A. Pietroniro, 2016: Operational surface water detection and monitoring using RADARSAT 2. Remote Sens., 8, 285, https://doi.org/10.3390/rs8040285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brakenridge, G. R., and et al. , 2010: Global Active Archive of Large Flood Events. University of Colorado Dartmouth Flood Observatory, accessed 20 September 2020, http://floodobservatory.colorado.edu/Archives/index.html.

    • Search Google Scholar
    • Export Citation
  • Bruijn, J. A., H. Moel, B. Jongman, M. C. Ruiter, J. Wagemaker, and J. C. J. H. Aerts, 2019: A global database of historic and real-time flood events based on social media. Sci. Data, 6, 311, https://doi.org/10.1038/s41597-019-0326-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerrai, D., Q. Yang, X. Shen, M. Koukoula, and E. N. Anagnostou, 2020: Brief communication: Hurricane Dorian: Automated near-real-time mapping of the “unprecedented” flooding in the Bahamas using synthetic aperture radar. Nat. Hazards Earth Syst. Sci., 20, 14631468, https://doi.org/10.5194/nhess-20-1463-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chini, M., R. Pelich, L. Pulvirenti, N. Pierdicca, R. Hostache, and P. Matgen, 2019: Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and Hurricane Harvey as a test case. Remote Sens., 11, 107, https://doi.org/10.3390/rs11020107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chouinard, E. F., B. Lehner, L. M. Rebelo, F. Papa, and S. K. Hamilton, 2015: Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ., 158, 348361, https://doi.org/10.1016/j.rse.2014.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, M. J., and et al. , 2016: Do geographically isolated wetlands influence landscape functions? Proc. Natl. Acad. Sci. USA, 113, 1978–1986, https://doi.org/10.1073/pnas.1512650113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., J. S. Kimball, L. A. Jones, Y. Kim, J. Glassy, and J. D. Watts, 2017: A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data, 9, 791808, https://doi.org/10.5194/essd-9-791-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., J. S. Kimball, J. Galantowicz, S. B. Kim, S. K. Chan, R. Reichle, L. A. Jones, and J. D. Watts, 2018: Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sens. Environ., 213, 117, https://doi.org/10.1016/j.rse.2018.04.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EC JRC, 2015: Copernicus Emergency Management Service. Accessed 21 August 2020, https://emergency.copernicus.eu/.

  • Federal Emergency Management Agency, 2016: FEMA policy standards for flood risk analysis and mapping. Federal Emergency Management Agency Doc., 79 pp., www.fema.gov/media-library-data/1581015527397-57f85306e2a67abc6a852298a9bcae77/Standards_for_Flood_Risk_Projects_(Nov2016).pdf.

  • Federal Emergency Management Agency, 2019: NFIP redacted claims data set. Accessed 20 April 2020, www.fema.gov/media-library/assets/documents/180374.

  • Feyisa, G. L., H. Meilby, R. Fensholt, and S. R. Proud, 2014: Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ., 140, 2335, https://doi.org/10.1016/j.rse.2013.08.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frasson, R. P. d. M., G. J. P. Schumann, A. J. Kettner, G. R. Brakenridge, and W. F. Krajewski, 2019a: Will the Surface Water and Ocean Topography (SWOT) satellite mission observe floods? Geophys. Res. Lett., 46, 10 43510 445, https://doi.org/10.1029/2019GL084686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frasson, R. P. d. M., and et al. , 2019b: Global relationships between river width, slope, catchment area, meander wavelength, sinuosity, and discharge. Geophys. Res. Lett., 46, 32523262, https://doi.org/10.1029/2019GL082027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, P., and et al. , 2019: Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull., 64, 370373, https://doi.org/10.1016/j.scib.2019.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and et al. , 2013: A unified flash flood database across the United States. Bull. Amer. Meteor. Soc., 94, 799805, https://doi.org/10.1175/BAMS-D-12-00198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimaldi, S., J. Xu, Y. Li, V. R. N. Pauwels, and J. P. Walker, 2020: Flood mapping under vegetation using single SAR acquisitions. Remote Sens. Environ., 237, 111582, https://doi.org/10.1016/j.rse.2019.111582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., M. Pan, Z. Wei, E. F. Wood, and J. Sheffield, 2020: A global drought and flood catalogue from 1950 to 2016. Bull. Amer. Meteor. Soc., 101, E508E535, https://doi.org/10.1175/BAMS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., Y. Peng, M. Lang, I. Y. Yeo, and G. McCarty, 2014: Wetland inundation mapping and change monitoring using Landsat and airborne lidar data. Remote Sens. Environ., 141, 231242, https://doi.org/10.1016/j.rse.2013.10.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and et al. , 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), version 4. NASA Algorithm Theoretical Basis Doc., 30 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

    • Search Google Scholar
    • Export Citation
  • Jin, H., C. Huang, M. W. Lang, I. Y. Yeo, and S. V. Stehman, 2017: Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sens. Environ., 190, 2641, https://doi.org/10.1016/j.rse.2016.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. W., 2015: Efficient wetland surface water detection and monitoring via Landsat: Comparison with in situ data from the everglades depth estimation network. Remote Sens., 7, 12 50312 538, https://doi.org/10.3390/rs70912503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. W., 2019: Improved automated detection of subpixel-scale inundation—Revised Dynamic Surface Water Extent (DSWE) partial surface water tests. Remote Sens., 11, 374, https://doi.org/10.3390/rs11040374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JPL, 2017: Advanced Rapid Imaging and Analysis Project. NASA, accessed 21 August 2020, https://aria.jpl.nasa.gov/.

  • Kousky, C., and E. Michel-Kerjan, 2017: Examining flood insurance claims in the United States: Six key findings. J. Risk Insur., 84, 819850, https://doi.org/10.1111/jori.12106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, M. W., E. S. Kasischke, S. D. Prince, and K. W. Pittman, 2008: Assessment of C-band synthetic aperture radar data for mapping and monitoring coastal plain forested wetlands in the mid-Atlantic region, U.S.A. Remote Sens. Environ., 112, 41204130, https://doi.org/10.1016/j.rse.2007.08.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehner, B., 2013: HydroSHEDS technical documentation version 1.2. World Wildlife Fund Tech. Doc. 26 pp., https://hydrosheds.org/images/inpages/HydroSHEDS_TechDoc_v1_2.pdf.

    • Search Google Scholar
    • Export Citation
  • Li, S., and et al. , 2018: Automatic near real-time flood detection using Suomi-NPP/VIIRS data. Remote Sens. Environ., 204, 672689, https://doi.org/10.1016/j.rse.2017.09.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., S. Martinis, M. Wieland, S. Schlaffer, and R. Natsuaki, 2019: Urban flood mapping using SAR intensity and interferometric coherence via Bayesian network fusion. Remote Sens., 11, 2231, https://doi.org/10.3390/rs11192231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., and et al. , 2019: Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res., 55, 64996516, https://doi.org/10.1029/2019WR025287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., M. Pan, G. H. Allen, R. P. de Frasson, Z. Zeng, D. Yamazaki, and E. F. Wood, 2020: Global estimates of reach-level bankfull river width leveraging big data geospatial analysis. Geophys. Res. Lett., 47, e2019GL086405, https://doi.org/10.1029/2019GL086405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, D. C., M. Trigg, J. Garcia-Pintado, H. L. Cloke, J. C. Neal, and P. D. Bates, 2016: Improving the TanDEM-X Digital Elevation Model for flood modelling using flood extents from synthetic aperture radar images. Remote Sens. Environ., 173, 1528, https://doi.org/10.1016/j.rse.2015.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mladenova, I. E., T. J. Jackson, R. Bindlish, and S. Hensley, 2013: Incidence angle normalization of radar backscatter data. IEEE Trans. Geosci. Remote Sens., 51, 17911804, https://doi.org/10.1109/TGRS.2012.2205264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASA, 2019: NASA-ISRO SAR (NISAR) mission science users’ handbook. NASA Doc., 139 pp., https://nisar.jpl.nasa.gov/system/documents/files/26_NISAR_FINAL_9-6-19.pdf.

    • Search Google Scholar
    • Export Citation
  • NCEI, 2016: Storm events database. NOAA, accessed 15 April 2020, www.ncdc.noaa.gov/stormevents/ftp.jsp.

  • NCEI, 2020: U.S. billion-dollar weather and climate disasters. NOAA, https://doi.org/10.25921/stkw-7w73.

  • NOAA, 2019: Spring flooding summary 2019. NOAA, www.weather.gov/dvn/summary_SpringFlooding_2019.

  • OFCM, 2019: Surface weather observations and reports. OFCM Federal Meteorological Handbook 1, 101 pp., www.ofcm.gov/publications/fmh/FMH1/fmh1_2019.pdf.

    • Search Google Scholar
    • Export Citation
  • Pekel, J. F., A. Cottam, N. Gorelick, and A. S. Belward, 2016: High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418422, https://doi.org/10.1038/nature20584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews, 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112, D12107, https://doi.org/10.1029/2006JD007847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prigent, C., D. P. Lettenmaier, F. Aires, and F. Papa, 2016: Toward a high resolution monitoring of continental surface water extent and dynamics, at global scale: From GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). Surv. Geophys., 37, 339355, https://doi.org/10.1007/s10712-015-9339-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahoo, B., and P. K. Bhaskaran, 2018: A comprehensive data set for tropical cyclone storm surge-induced inundation for the east coast of India. Int. J. Climatol., 38, 403419, https://doi.org/10.1002/joc.5184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, R., K. C. McDonald, B. Chapman, K. Jensen, E. Podest, Z. Tessler, T. J. Bohn, and R. Zimmerman, 2014: Development and evaluation of a multi-year inundated land surface data set derived from active/passive microwave remote sensing data. Remote Sens., 7, 16 66816 732, https://doi.org/10.3390/rs71215843.

    • Search Google Scholar
    • Export Citation
  • Shastry, A., and M. Durand, 2019: Utilizing flood inundation observations to obtain floodplain topography in data-scarce regions. Front. Earth Sci., 6, 243, https://doi.org/10.3389/feart.2018.00243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., K. M. Andreadis, E. F. Wood, and D. P. Lettenmaier, 2009: Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Climate, 22, 19621981, https://doi.org/10.1175/2008JCLI2722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., H. J. Vergara, E. I. Nikolopoulos, E. N. Anagnostou, Y. Hong, Z. Hao, K. Zhang, and K. Mao, 2016: GDBC: A tool for generating global-scale distributed basin morphometry. Environ. Modell. Software, 83, 212223, https://doi.org/10.1016/j.envsoft.2016.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., Y. Mei, and E. N. Anagnostou, 2017a: A comprehensive database of flood events in the contiguous United States from 2002 to 2013. Bull. Amer. Meteor. Soc., 98, 14931502, https://doi.org/10.1175/BAMS-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., E. N. Anagnostou, Y. Mei, and Y. Hong, 2017b: A global distributed basin morphometric dataset. Sci. Data, 4, 160124, https://doi.org/10.1038/sdata.2016.124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., D. Wang, K. Mao, E. N. Anagnostou, and Y. Hong, 2019a: Inundation extent mapping by synthetic aperture radar: A review. Remote Sens., 11, 879895, https://doi.org/10.3390/rs11070879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X., E. N. Anagnostou, G. H. Allen, G. R. Brakenridge, and A. J. Kettner, 2019b: Near real-time non-obstructed flood inundation mapping using synthetic aperture radar. Remote Sens. Environ., 221, 302315, https://doi.org/10.1016/j.rse.2018.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2017: Tropical cyclone report: Hurricane Matthew (AL142016). NHC Tech. Rep., 96 pp., www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., and R. Berg, 2019: Tropical cyclone report: Hurricane Florence (AL062018). NHC Tech. Rep., 98 pp., www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf.

    • Search Google Scholar
    • Export Citation
  • Tarboton, D. G., 1989: The analysis of river basins and channel networks using digital terrain data. Ph.D. thesis, Massachusetts Institute of Technology, 252 pp.

  • Tarboton, D. G., 1997: A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res., 33, 309319, https://doi.org/10.1029/96WR03137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsyganskaya, V., S. Martinis, P. Marzahn, and R. Ludwig, 2018: SAR-based detection of flooded vegetation–a review of characteristics and approaches. Int. J. Remote Sens., 39, 22552293, https://doi.org/10.1080/01431161.2017.1420938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UNITAR, 2018: International charter space and major disasters activation for floods in Somalia. Accessed 7 May 2018, https://disasterscharter.org/web/guest/activations/-/article/flood-in-somalia-activation-570-.

    • Search Google Scholar
    • Export Citation
  • UNITAR, 2020: International charter space and major disasters activation for floods in Somalia. Accessed 28 April 2020, https://disasterscharter.org/web/guest/activations/-/article/flood-large-in-somalia-activation-650-.

    • Search Google Scholar
    • Export Citation
  • U.S. Fish and Wildlife Service, 2020: National wetlands inventory. Accessed 10 June 2020, www.fws.gov/wetlands/Data/Data-Download.html.

  • Westerhoff, R. S., M. P. H. Kleuskens, H. C. Winsemius, H. J. Huizinga, G. R. Brakenridge, and C. Bishop, 2013: Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci., 17, 651663, https://doi.org/10.5194/hess-17-651-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, O. E. J., P. D. Bates, C. C. Sampson, A. M. Smith, K. A. Johnson, and T. A. Erickson, 2017: Validation of a 30 m resolution flood hazard model of the conterminous United States. Water Resour. Res., 53, 79687986, https://doi.org/10.1002/2017WR020917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, O. E. J., N. Pinter, P. D. Bates, and C. Kousky, 2020: New insights into US flood vulnerability revealed from flood insurance big data. Nat. Commun., 11, 1444, https://doi.org/10.1038/s41467-020-15264-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Y. Gan, A. J. Kettner, Q. Yang, C. Zeng, G. R. Brakenridge, and Y. Hong, 2020: Towards high resolution flood monitoring: An integrated methodology using passive microwave brightness temperatures and Sentinel synthetic. J. Hydrol., 582, 124377, https://doi.org/10.1016/j.jhydrol.2019.124377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, W., K. Guan, J. Sheffield, and E. F. Wood, 2016: Depiction of drought over sub-Saharan Africa using reanalyses precipitation data sets. J. Geophys. Res. Atmos., 121, 10 55510 574, https://doi.org/10.1002/2016JD024858.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 1
Full Text Views 1266 1266 192
PDF Downloads 829 829 176

A High-Resolution Flood Inundation Archive (2016–the Present) from Sentinel-1 SAR Imagery over CONUS

View More View Less
  • 1 College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi, China, and Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • | 2 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • | 3 College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi, China
  • | 4 WMA Hydrologic Remote Sensing Branch, U.S. Geological Survey, Leetown, West Virginia
  • | 5 Dartmouth Flood Observatory, Community Surface Dynamics Modeling System, Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Most existing inundation inventories are based on surveys, news, or passive remote sensing imagery. Affected by spatiotemporal resolution or weather conditions, these inventories are limited in spatial details or coverage. Satellite synthetic aperture radar (SAR) data have recently enabled flood mapping at unprecedented spatiotemporal resolution. However, the bottleneck in producing SAR-based flood maps is the requirement of expert manual processing to maintain acceptable accuracy by most SAR-driven mapping techniques. To fill the vacancy, we generate a high-resolution (10 m) flood inundation dataset over the contiguous United States (CONUS) from nearly the entire Sentinel-1 SAR archive (from January 2016 to the present), using a recently developed automated Radar Produced Inundation Diary (RAPID) system. RAPID uses U.S. Geological Survey (USGS) water watch system and accumulated precipitation to identify SAR images that potentially overlap a flood event. The dataset include inundation events with the temporal scale from several days to months. Concluded from all 559 overlapping images in the period from 2016 to the first half of 2019, the comparison of the proposed dataset against the USGS Dynamic Surface Water Extent (DSWE) product yields an overall, user, producer agreements, and critical success index of 99.06%, 87.63%, 91.76%, and 81.23%, respectively, demonstrating the high accuracy of the proposed dataset and the robustness of the automated system. We anticipate this archive to facilitate many applications, including large-scale flood loss and risk assessment, and inundation model calibration and validation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinyi Shen, xinyi.shen@uconn.edu

Abstract

Most existing inundation inventories are based on surveys, news, or passive remote sensing imagery. Affected by spatiotemporal resolution or weather conditions, these inventories are limited in spatial details or coverage. Satellite synthetic aperture radar (SAR) data have recently enabled flood mapping at unprecedented spatiotemporal resolution. However, the bottleneck in producing SAR-based flood maps is the requirement of expert manual processing to maintain acceptable accuracy by most SAR-driven mapping techniques. To fill the vacancy, we generate a high-resolution (10 m) flood inundation dataset over the contiguous United States (CONUS) from nearly the entire Sentinel-1 SAR archive (from January 2016 to the present), using a recently developed automated Radar Produced Inundation Diary (RAPID) system. RAPID uses U.S. Geological Survey (USGS) water watch system and accumulated precipitation to identify SAR images that potentially overlap a flood event. The dataset include inundation events with the temporal scale from several days to months. Concluded from all 559 overlapping images in the period from 2016 to the first half of 2019, the comparison of the proposed dataset against the USGS Dynamic Surface Water Extent (DSWE) product yields an overall, user, producer agreements, and critical success index of 99.06%, 87.63%, 91.76%, and 81.23%, respectively, demonstrating the high accuracy of the proposed dataset and the robustness of the automated system. We anticipate this archive to facilitate many applications, including large-scale flood loss and risk assessment, and inundation model calibration and validation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xinyi Shen, xinyi.shen@uconn.edu
Save