• Atkinson, S. E., R. A. Woods, and M. Sivapalan, 2002: Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res., 38, 1314, https://doi.org/10.1029/2002WR001487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, Z. X., and et al. , 2012: Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions. J. Hydrol., 466–467, 3746, https://doi.org/10.1016/j.jhydrol.2012.07.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. De Roo, and A. I. J. M. Van Dijk, 2015: Global maps of streamflow characteristics based on observations from several thousand catchments. J. Hydrometeor., 16, 14781501, https://doi.org/10.1175/JHM-D-14-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., A. I. J. M. Van Dijk, A. De Roo, D. G. Miralles, T. R. Mcvicar, J. Schellekens, and L. A. Bruijnzeel, 2016: Global-scale regionalization of hydrologic model parameters. Water Resour. Res., 52, 35993622, https://doi.org/10.1002/2015WR018247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, K. E., J. R. U. Blanco, A. L. Atchley, N. M. Urban, A. Jonko, and R. S. Middleton, 2018: Global sensitivity of simulated water balance indicators under future climate change in the Colorado basin. Water Resour. Res., 54, 132149, https://doi.org/10.1002/2017WR020471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., J. R. Larsen, T. H. Van Emmerik, and R. A. Woods, 2017: A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res., 53, 84758486, https://doi.org/10.1002/2017WR021593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohn, T. J., B. Livneh, J. W. Oyler, S. W. Running, B. Nijssen, and D. P. Lettenmaier, 2013: Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models. Agric. Meteor., 176, 3849, https://doi.org/10.1016/j.agrformet.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burn, D. H., and D. B. Boorman, 1993: Estimation of hydrological parameters at ungauged catchments. J. Hydrol., 143, 429454, https://doi.org/10.1016/0022-1694(93)90203-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. M. Hornberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, https://doi.org/10.1029/WR020i006p00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuntz, M., and et al. , 2015: Computationally inexpensive identification of noninformative model parameters by sequential screening. Water Resour. Res., 51, 64176441, https://doi.org/10.1002/2015WR016907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A. G., 2017: Dai and Trenberth global river flow and continental discharge dataset. Research Data Archive at NCAR CISL, accessed 26 April 2020, https://doi.org/10.5065/D6V69H1T.

    • Search Google Scholar
    • Export Citation
  • Dai, Y. J., W. Shangguan, Q. Y. Duan, B. Y. Liu, S. H. Fu, and G. Y. Niu, 2013: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeor., 14, 869887, https://doi.org/10.1175/JHM-D-12-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Do, H. X., L. Gudmundsson, M. Leonard, and S. Westra, 2018: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata. Earth Syst. Sci. Data, 10, 765785, https://doi.org/10.5194/essd-10-765-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, Q. Y., S. Sorooshian, and V. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031, https://doi.org/10.1029/91WR02985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ficchì, A., and L. Stephens, 2019: Climate variability alters flood timing across Africa. Geophys. Res. Lett., 46, 88098819, https://doi.org/10.1029/2019GL081988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y. B., C. Merz, G. Lischeid, and M. Schneider, 2018: A review on missing hydrological data processing. Environ. Earth Sci., 77, 47, https://doi.org/10.1007/s12665-018-7228-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., T. Yao, V. Masson-Delmotte, H. C. Steen-Larsen, and W. Wang, 2019: Collapsing glaciers threaten Asia’s water supplies. Nature, 565, 1921, https://doi.org/10.1038/d41586-018-07838-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghiggi, G., V. Humphrey, S. I. Seneviratne, and L. Gudmundsson, 2019: GRUN: An observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data, 11, 16551674, https://doi.org/10.5194/essd-11-1655-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gou, J. J., C. Y. Miao, Q. Y. Duan, Q. H. Tang, Z. H. Di, W. H. Liao, J. W. Wu, and R. Zhou, 2020: Sensitivity analysis-based automatic parameter calibration of the variable infiltration capacity (VIC) model for streamflow simulations over China. Water Resour. Res., 56, e2019WR025968, https://doi.org/10.1029/2019WR025968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., S. I. Seneviratne, and X. B. Zhang, 2017: Anthropogenic climate change detected in European renewable freshwater resources. Nat. Climate Change, 7, 813816, https://doi.org/10.1038/nclimate3416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., S. Sorooshian, and O. Yapo Patrice, 1999: Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng., 4, 135143, https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Z. A. Samani, 1985: Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1, 9699, https://doi.org/10.13031/2013.26773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., K. Yang, W. J. Tang, H. Lu, J. Qin, Y. Y. Chen, and X. Li, 2020: The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X. G., M. Pan, Z. W. Wei, E. F. Wood, and J. Sheffield, 2020: A global drought and flood catalogue from 1950 to 2016. Bull. Amer. Meteor. Soc., 101, E508E535, https://doi.org/10.1175/BAMS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C. H., S. L. Guo, L. H. Xiong, and D. Z. Peng, 2005: A modified Xinanjiang model and its application in northern China. Nord. Hydrol., 36, 175192, https://doi.org/10.2166/nh.2005.0013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., J. P. Moiwo, Y. Yang, S. Han, and Y. Yang, 2010: Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J. Hydrol., 393, 219232, https://doi.org/10.1016/j.jhydrol.2010.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C., Y. Chen, S. Zhang, and J. Wu, 2018: Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys., 56, 333360, https://doi.org/10.1029/2018RG000598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hundecha, Y., and A. Bárdossy, 2004: Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J. Hydrol., 292, 281295, https://doi.org/10.1016/j.jhydrol.2004.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 14 41514 428, https://doi.org/10.1029/94JD00483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P. R., and et al. , 2019: Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res., 55, 64996516, https://doi.org/10.1029/2019WR025287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., R. Kumar, and L. Samaniego, 2015: Influence of soil textural properties on hydrologic fluxes in the Mississippi River basin. Hydrol. Processes, 29, 46384655, https://doi.org/10.1002/hyp.10601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magette, W., V. Shanholtz, and J. Carr, 1976: Estimating selected parameters for the Kentucky watershed model from watershed characteristics. Water Resour. Res., 12, 472476, https://doi.org/10.1029/WR012i003p00472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markonis, Y., Y. Moustakis, C. Nasika, P. Sychova, P. Dimitriadis, M. Hanel, P. Máca, and S. Papalexiou, 2018: Global estimation of long-term persistence in annual river runoff. Adv. Water Resour., 113, 112, https://doi.org/10.1016/j.advwatres.2018.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, J., F. Zabel, and W. Mauser, 2018: A global approach to estimate irrigated areas – A comparison between different data and statistics. Hydrol. Earth Syst. Sci., 22, 11191133, https://doi.org/10.5194/hess-22-1119-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C. Y., Q. H. Sun, A. G. L. Borthwick, and Q. Y. Duan, 2016: Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep., 6, 22543, https://doi.org/10.1038/srep22543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, C. Y., Q. Y. Duan, Q. H. Sun, X. H. Lei, and H. Li, 2019: Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environ. Res. Lett., 14, 025004, https://doi.org/10.1088/1748-9326/aaf306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and P. Coulibaly, 2009: Developments in hydrometric network design: A review. Rev. Geophys., 47, RG2001, https://doi.org/10.1029/2007RG000243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, B., and D. Shrubsole, 1994: Canadian water management: Visions for sustainability. Canadian Water Resources Association, 76 pp.

  • Mizukami, N., M. P. Clark, A. J. Newman, A. W. Wood, E. D. Gutmann, B. Nijssen, O. Rakovec, and L. Samaniego, 2017: Towards seamless large-domain parameter estimation for hydrologic models. Water Resour. Res., 53, 80208040, https://doi.org/10.1002/2017WR020401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nijssen, B., D. P. Lettenmaier, X. Liang, S. W. Wetzel, and E. F. Wood, 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724, https://doi.org/10.1029/96WR03517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, https://doi.org/10.1126/science.1128845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oudin, L., V. Andréassian, C. Perrin, C. Michel, and N. Le Moine, 2008: Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007WR006240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, M., and et al. , 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108, 8850, https://doi.org/10.1029/2003JD003994.

    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and A. Montanari, 2019: Global and regional increase of precipitation extremes under global warming. Water Resour. Res., 55, 49014914, https://doi.org/10.1029/2018WR024067.

    • Search Google Scholar
    • Export Citation
  • Parajka, J., A. Viglione, M. Rogger, J. L. Salinas, M. Sivapalan, and G. Blöschl, 2013: Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies. Hydrol. Earth Syst. Sci., 17, 17831795, https://doi.org/10.5194/hess-17-1783-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S. L., and et al. , 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, https://doi.org/10.1038/nature09364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rakovec, O., N. Mizukami, R. Kumar, A. J. Newman, S. Thober, A. W. Wood, M. P. Clark, and L. Samaniego, 2019: Diagnostic evaluation of large-domain hydrologic models calibrated across the contiguous United States. J. Geophys. Res. Atmos., 124, 13 99114 007, https://doi.org/10.1029/2019JD030767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., and et al. , 2018: Anthropogenic warming exacerbates European soil moisture droughts. Nat. Climate Change, 8, 421426, https://doi.org/10.1038/s41558-018-0138-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samaniego, L., R. Kumar, and S. Attinger, 2010: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and et al. , 2014: A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., 95, 861882, https://doi.org/10.1175/BAMS-D-12-00124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q. H., C. Y. Miao, Q. Y. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79107, https://doi.org/10.1002/2017RG000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Q. H., C. Y. Miao, M. Hanel, A. G. L. Borthwick, Q. Y. Duan, D. Y. Ji, and H. Li, 2019: Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int., 128, 125136, https://doi.org/10.1016/j.envint.2019.04.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, Y., Q. H. Tang, Z. G. Wang, F. H. S. Chiew, X. J. Zhang, and H. Xiao, 2019: Different precipitation elasticity of runoff for precipitation increase and decrease at watershed scale. J. Geophys. Res. Atmos., 124, 11 93211 943, https://doi.org/10.1029/2018JD030129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tencaliec, P., A.-C. Favre, C. Prieur, and T. Mathevet, 2015: Reconstruction of missing daily streamflow data using dynamic regression models. Water Resour. Res., 51, 94479463, https://doi.org/10.1002/2015WR017399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tetzlaff, D., S. K. Carey, J. P. Mcnamara, H. Laudon, and C. Soulsby, 2017: The essential value of long-term experimental data for hydrology and water management. Water Resour. Res., 53, 25982604, https://doi.org/10.1002/2017WR020838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tu, X. J., V. P. Singh, X. H. Chen, L. Chen, Q. Zhang, and Y. Zhao, 2015: Intra-annual distribution of streamflow and individual impacts of climate change and human activities in the Dongijang River Basin, China. Water Resour. Manage., 29, 26772695, https://doi.org/10.1007/s11269-015-0963-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., Q. Y. Duan, W. Gong, A. Z. Ye, Z. H. Di, and C. Y. Miao, 2014: An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environ. Modell. Software, 60, 167179, https://doi.org/10.1016/j.envsoft.2014.05.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, H. L., C.-Y. Xu, H. Chen, Z. X. Zhang, and L. Li, 2013: Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J. Hydrol., 505, 112, https://doi.org/10.1016/j.jhydrol.2013.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., M. Zhang, L. Y. Wang, and T. Zhou, 2017: Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrol. Earth Syst. Sci., 21, 54775492, https://doi.org/10.5194/hess-21-5477-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. J., Q. H. Tang, M. Pan, and Y. Tang, 2014: A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeor., 15, 20672084, https://doi.org/10.1175/JHM-D-13-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. N., Y. Zhao, H. H. Li, L. Z. Wang, L. Li, and S. Jiang, 2017: Quantitative analysis of the water-energy-climate nexus in Shanxi Province, China. Energy Procedia, 142, 23412347, https://doi.org/10.1016/j.egypro.2017.12.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 5 0
Full Text Views 955 955 117
PDF Downloads 848 848 112

CNRD v1.0: A High-Quality Natural Runoff Dataset for Hydrological and Climate Studies in China

View More View Less
  • 1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
  • | 2 UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
  • | 3 Department of Geography, University of California, Los Angeles, Los Angeles, California
  • | 4 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Reliable, spatiotemporally continuous runoff records are necessary for identifying climate change impacts and planning effective water management strategies. Existing Chinese runoff data to date have been produced from sparse, poor-quality gauge measurements at different time scales. We have developed a new, quality-controlled gridded runoff dataset, the China Natural Runoff Dataset version 1.0 (CNRD v1.0), which provides daily, monthly, and annual 0.25° runoff estimates for the period 1961–2018 over China. CNRD v1.0 was generated using the Variable Infiltration Capacity (VIC) model. A comprehensive parameter uncertainty analysis framework incorporating parameter sensitivity analysis, optimization, and regionalization with 200 natural or near-natural gauge catchments was used to train the VIC model. Overall, the results show well-calibrated parameters for most gauged catchments except arid and semiarid areas, and the skill scores present high values for all catchments. For the pseudo-/test-ungauged catchments, the model parameters estimated by the multiscale parameter regionalization technique offer the best regionalization solution. CNRD v1.0 is the first free public dataset of gridded natural runoff estimated using a comprehensive model parameter uncertainty analysis framework for China. These results indicate that CNRD v1.0 has high potential for application to long-term hydrological and climate studies in China and to improve international runoff databases for global-scale studies.

Supplemental material: https://doi.org/10.1175/BAMS-D-20-0094.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chiyuan Miao, miaocy@vip.sina.com

Abstract

Reliable, spatiotemporally continuous runoff records are necessary for identifying climate change impacts and planning effective water management strategies. Existing Chinese runoff data to date have been produced from sparse, poor-quality gauge measurements at different time scales. We have developed a new, quality-controlled gridded runoff dataset, the China Natural Runoff Dataset version 1.0 (CNRD v1.0), which provides daily, monthly, and annual 0.25° runoff estimates for the period 1961–2018 over China. CNRD v1.0 was generated using the Variable Infiltration Capacity (VIC) model. A comprehensive parameter uncertainty analysis framework incorporating parameter sensitivity analysis, optimization, and regionalization with 200 natural or near-natural gauge catchments was used to train the VIC model. Overall, the results show well-calibrated parameters for most gauged catchments except arid and semiarid areas, and the skill scores present high values for all catchments. For the pseudo-/test-ungauged catchments, the model parameters estimated by the multiscale parameter regionalization technique offer the best regionalization solution. CNRD v1.0 is the first free public dataset of gridded natural runoff estimated using a comprehensive model parameter uncertainty analysis framework for China. These results indicate that CNRD v1.0 has high potential for application to long-term hydrological and climate studies in China and to improve international runoff databases for global-scale studies.

Supplemental material: https://doi.org/10.1175/BAMS-D-20-0094.2

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chiyuan Miao, miaocy@vip.sina.com

Supplementary Materials

    • Supplemental Materials (PDF 6.18 MB)
Save