• Benjamin, S. G., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209248, https://doi.org/10.1017/S0022112068000133.

  • Bluestein, H. B., and C. R. Parks, 1983: A synoptic and photographic climatology of low precipitation thunderstorms in the Southern Plains. Mon. Wea. Rev., 111, 20342046, https://doi.org/10.1175/1520-0493(1983)111<2034:ASAPCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, https://doi.org/10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., S. W. Nesbitt, R. J. Trapp, S. Lasher-Trapp, and M. Oue, 2020: Observational study of the thermodynamics and morphological characteristics of a midlatitude continental cold pool event. Mon. Wea. Rev., 148, 719737, https://doi.org/10.1175/MWR-D-19-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bousquet, O., P. Tabary, and J. Parent du Châtelet, 2008: Operational multiple-Doppler wind retrieval inferred from long-range radial velocity measurements. J. Appl. Meteor. Climatol., 47, 29292945, https://doi.org/10.1175/2008JAMC1878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and R. B. Wilhelmson, 1994: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126136, https://doi.org/10.1175/1520-0493(1994)122<0126:TROMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: The evolution of tornadic storms. J. Atmos. Sci., 22, 664668, https://doi.org/10.1175/1520-0469(1965)022<0664:TEOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunkow, D., V. N. Bringi, P. C. Kennedy, S. A. Rutledge, V. Chandrasekar, E. A. Mueller, and R. K. Bowie, 2000: A description of the CSU-CHILL national radar facility. J. Atmos. Oceanic Technol., 17, 15961608, https://doi.org/10.1175/1520-0426(2000)017<1596:ADOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, https://doi.org/10.1175/2010MWR3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., D. Ahijevych, C. Davis, S. Trier, and M. Weisman, 2005: Observations of cold pool properties in mesoscale convective systems during BAMEX. 11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., JP5J.12, https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96718.htm.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Govt. Printing Office, 287 pp.

  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An example of simulated nontorandic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collis, S., A. Protat, and K.-S. Chung, 2010: The effect of radial velocity gridding artifacts on variationally retrieved vertical velocities. J. Atmos. Oceanic Technol., 27, 12391246, https://doi.org/10.1175/2010JTECHA1402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. H. Bryan, and S. C. van den Heever, 2010: Storm and Cloud Dynamics. 2nd ed. Academic Press, 820 pp.

  • Davies-Jones, R. P., and J. H. Henderson, 1975: Updraft properties deduced statistically from Rawin soundings. Pure Appl. Geophys., 113, 787801, https://doi.org/10.1007/BF01592959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. W. Burgess, and L. R. Lemon, 1976: An atypical tornado-producing cumulonimbus. Weather, 31, 337347, https://doi.org/10.1002/j.1477-8696.1976.tb07449.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and et al. , 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751094, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis Instruments, 2013: Wireless Vantage Pro2 ISS with 24-Hr fan aspirated radiation shield specifications. Accessed 20 June 2019, www.davisinstruments.com/product/wireless-vantage-pro2-iss-with-24-hr-fan-aspirated-radiation-shield/.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiGangi, E. A., D. R. MacGorman, C. L. Ziegler, D. Betten, M. Biggerstaff, M. Bowlan, and C. K. Potvin, 2016: An overview of the 29 May 2012 Kingfisher supercell during DC3. J. Geophys. Res. Atmos., 121, 14 31614 343, https://doi.org/10.1002/2016JD025690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DJI, 2016: Matrice 600 specifications. Accessed 21 May 2019, www.dji.com/matrice600/info#specs.

  • DJI, 2017: Matrice 600 pro specifications. Accessed 21 May 2019, www.dji.com/matrice600-pro/info#specs.

  • Doswell, C. A., III, 2001: Severe convective storms—An overview. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 1–26, https://doi.org/10.1175/0065-9401-28.50.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drager, A. J., and S. C. van den Heever, 2017: Characterizing convective cold pools. J. Adv. Model. Earth Syst., 9, 10911115, https://doi.org/10.1002/2016MS000788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drager, A. J., L. D. Grant, and S. C. van den Heever, 2020: Cold pool responses to changes in soil moisture. J. Adv. Model. Earth Syst., 12, e2019MS001922, https://doi.org/10.1029/2019MS001922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 23812403, https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210, https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., T. L. Gardner, M. C. Link, and K. C. Smith, 2012: Surface cold pools in the outer rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev., 140, 471491, https://doi.org/10.1175/MWR-D-11-00099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 48394849, https://doi.org/10.1175/2008MWR2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., L. K. Berg, Z. Feng, F. Mei, R. Newsom, K. Sakaguchi, and H. Xiao, 2019: The impact of variable land-atmosphere coupling on convective cloud populations observed during the 2016 HI-SCALE field campaign. J. Adv. Model. Earth Syst., 11, 26292654, https://doi.org/10.1029/2019MS001727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration, 2017: Part 107 Waivers Granted. Accessed 28 June 2017, https://web.archive.org/web/20170628182836/https://www.faa.gov/uas/request_waiver/waivers_granted/.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., S. Higgins, F. J. Masters, and C. R. Lopez, 2013: Articulating and stationary Parsivel disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Oceanic Technol., 30, 20632080, https://doi.org/10.1175/JTECH-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaynor, J. E., and P. A. Mandics, 1978: Analysis of the tropical marine boundary layer during GATE using acoustic sounder data. Mon. Wea. Rev., 106, 223232, https://doi.org/10.1175/1520-0493(1978)106<0223:AOTTMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Garelli, S. Park, J. Nie, G. Torri, and Z. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43, 874883, https://doi.org/10.1002/2015GL067262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2014: Microphysical and dynamical characteristics of low-precipitation and classic supercells. J. Atmos. Sci., 71, 26042624, https://doi.org/10.1175/JAS-D-13-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2015: Cold pool and precipitation responses to aerosol loading: Modulation by dry layers. J. Atmos. Sci., 72, 13981408, https://doi.org/10.1175/JAS-D-14-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2018: Cold pool-land surface interactions in a dry continental environment. J. Adv. Model. Earth Syst., 10, 15131526, https://doi.org/10.1029/2018MS001323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., M. W. Moncrieff, T. P. Lane, and S. C. van den Heever, 2020: Shear-parallel tropical convective systems: Importance of cold pools and wind shear. Geophys. Res. Lett., 47, 503, https://doi.org/10.1029/2020GL087720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, B. R., A. R. Segales, T. M. Bell, E. A. Pillar-Little, and P. B. Chilson, 2019: Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems. Sensors, 19, 1470, https://doi.org/10.3390/s19061470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Tropical anvil clouds and climate sensitivity. Proc. Natl. Acad. Sci. USA, 113, 88978899, https://doi.org/10.1073/pnas.1610455113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herman, G. R., E. R. Nielsen, and R. S. Schumacher, 2018: Probabilistic verification of storm prediction center convective outlooks. Wea. Forecasting, 33, 161184, https://doi.org/10.1175/WAF-D-17-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirt, M., G. C. Craig, S. A. K. Schäfer, J. Savre, and R. Heinze, 2020: Cold pool driven convective initiation: Using causal graph analysis to determine what convection permitting models are missing. Quart. J. Roy. Meteor. Soc., 146, 22052227, https://doi.org/10.1002/qj.3788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, and G. R. Herman, 2019: Evolution of pre- and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., 2016: The sensitivity of deep ascent of cold pool air to vertical shear and cold pool buoyancy. Electron. J. Severe Storms Meteor., 11 (3), www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/151.

    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and R. B. Wilhelmson, 2011: The dependence of storm longevity on the pattern of deep convection initiation in a low-shear environment. Mon. Wea. Rev., 139, 31253138, https://doi.org/10.1175/MWR-D-10-05036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., B. Argrow, J. Elston, J. Lahowetz, E. W. Frew, and P. C. Kennedy, 2012: The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment. Bull. Amer. Meteor. Soc., 93, 3954, https://doi.org/10.1175/2011BAMS3073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Met Systems, 2016: iMet-XQ data sheet. Accessed 25 May 2019, www.intermetsystems.com/ee/pdf/202020_iMet-XQ_161005.pdf.

  • Islam, A., A. L. Houston, A. Shankar, and C. Detweiler, 2019: Design and evaluation of sensor housing for boundary layer profiling using multirotors. Sensors, 19, 2481, https://doi.org/10.3390/s19112481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., 2017: Vertical velocity in the gray zone. J. Adv. Model. Earth Syst., 9, 23042316, https://doi.org/10.1002/2017MS001059.

  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation, cold pools, and domain size. Geophys. Res. Lett., 40, 994998, https://doi.org/10.1002/grl.50204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and et al. , 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and airflow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 14441473, https://doi.org/10.1175/1520-0493(1988)116<1444:TROSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Junyent, F., V. Chandrasekar, V. N. Bringi, S. A. Rutledge, P. C. Kennedy, D. Brunkow, J. George, and R. Bowie, 2015: Transformation of the CSU-CHILL radar facility to a dual frequency, dual-polarization, Doppler system. Bull. Amer. Meteor. Soc., 96, 975996, https://doi.org/10.1175/BAMS-D-13-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., H. B. Bluestein, P. J. Neiman, F. M. Ralph, and W. F. Feltz, 2001: Wind structure in a supercell thunderstorm as measured by a UHF wind profiler. Mon. Wea. Rev., 129, 19681986, https://doi.org/10.1175/1520-0493(2001)129<1968:WSIAST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux. J. Atmos. Sci., 37, 24442457, https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., L. Grasso, J. F. Dostalek, and J. Kerkmann, 2014: Use of the GOES-R split-window difference to diagnose deepening low-level water vapor. J. Appl. Meteor. Climatol., 53, 2005–2016, https://doi.org/10.11-+-75/JAMC-D-14-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., D. Bikos, and L. Grasso, 2018: Using the GOES-16 split window difference to detect a boundary prior to cloud formation. Bull. Amer. Meteor. Soc., 99, 15411544, https://doi.org/10.1175/BAMS-D-17-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2000: Simulated density currents in idealized stratified environments. Mon. Wea. Rev., 128, 14201437, https://doi.org/10.1175/1520-0493(2000)128<1420:SDCIIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lock, N. A., and A. L. Houston, 2015: Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007. Int. J. Climatol., 35, 40474056, https://doi.org/10.1002/joc.4261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., S. C. van den Heever, S. M. Saleeby, and S. M. Kreidenweis, 2016: The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs. J. Geol. Res., 121, 79137935, https://doi.org/10.1002/2016JD024762.

    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., P. C. Kennedy, M. M. Bell, A. J. Drager, L. D. Grant, S. W. Freeman, and S. C. van den Heever, 2020: Updraft vertical velocity observations and uncertainties in High Plains supercells using radiosondes and radars. Mon. Wea. Rev., 148, 44354452, https://doi.org/10.1175/MWR-D-20-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and S. M. Fredrick, 1998: Custom Editing and Display of Reduced Information in Cartesian space (CEDRIC) manual. National Center for Atmospheric Research, Mesoscale and Microscale Meteorology Division, 130 pp.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., S. A. Tessendorf, K. Ikeda, and G. Thompson, 2012: Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup. Mon. Wea. Rev., 140, 24372460, https://doi.org/10.1175/MWR-D-11-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., D. R. Durran, and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110, D06113, https://doi.org/10.1029/2004JD005059.

    • Search Google Scholar
    • Export Citation
  • Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a high plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 10371051, https://doi.org/10.1175/1520-0450(1986)025<1037:MCOAWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NASEM, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, 716 pp., https://doi.org/10.17226/24938.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., and R. A. Brown, 1987: Error sources and accuracy of vertical velocities computed from multiple-Doppler radar measurements in deep convective storms. J. Atmos. Oceanic Technol., 4, 233238, https://doi.org/10.1175/1520-0426(1987)004<0233:ESAAOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, https://doi.org/10.1175/MWR3200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 1991: NOAA Next Generation Radar (NEXRAD) Level 2 Base Data. NOAA National Centers for Environmental Information, accessed 14 May 2019, https://doi.org/10.7289/V5W9574V.

    • Search Google Scholar
    • Export Citation
  • Oue, M., P. Kollias, A. Shapiro, A. Tatarevic, and T. Matsui, 2019: Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals. Atmos. Meas. Tech., 12, 19992018, https://doi.org/10.5194/amt-12-1999-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., L. J. Wicker, and A. Shapiro, 2012: Assessing errors in variational dual-Doppler wind syntheses of supercell thunderstorms observed by storm-scale mobile radars. J. Atmos. Oceanic Technol., 29, 10091025, https://doi.org/10.1175/JTECH-D-11-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 14741483, https://doi.org/10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purdom, J. F. W., 1982: Subjective interpretation of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149166.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., J. M. Straka, R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 9951006, https://doi.org/10.1175/1520-0477(1994)075<0995:VOTOOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Riganti, C. J., and A. L. Houston, 2017: Rear-flank outflow dynamics and thermodynamics in the 10 June 2010 Last Chance, Colorado, supercell. Mon. Wea. Rev., 145, 24872504, https://doi.org/10.1175/MWR-D-16-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2015: NCAR’s experimental real-time convection-allowing ensemble prediction system. Wea. Forecasting, 30, 16451654, https://doi.org/10.1175/WAF-D-15-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2012: Simulated density currents beneath embedded stratified layers. J. Atmos. Sci., 69, 21922200, https://doi.org/10.1175/JAS-D-11-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., N. Westcott, R. Clerman, and R. A. Pielke, 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklimatol., 29A, 140.

  • Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, L24803, https://doi.org/10.1029/2008GL035866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soderholm, J., H. McGowan, H. Richter, K. Walsh, T. Weckwerth, and M. Coleman, 2016: The Coastal Convective Interactions Experiment (CCIE): Understanding the role of sea breezes for hailstorm hotspots in eastern Australia. Bull. Amer. Meteor. Soc., 97, 16871698, https://doi.org/10.1175/BAMS-D-14-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: Numerical solutions of a non-linear density current: A benchmark solution and comparisons. Int. J. Numer. Methods Fluids, 17, 122, https://doi.org/10.1002/fld.1650170103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., 1991: Eye of the Denver cyclone. Mon. Wea. Rev., 119, 12831292, https://doi.org/10.1175/1520-0493(1991)119<1283:EOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, https://doi.org/10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, J. J., and R. H. Johnson, 1985: Summer surface flow characteristics over northeast Colorado. Mon. Wea. Rev., 113, 14581469, https://doi.org/10.1175/1520-0493(1985)113<1458:SSFCON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. J. Stensrud, M. C. Coniglio, R. S. Schumacher, M. E. Baldwin, S. Waugh, and D. T. Conlee, 2016: Mobile radiosonde deployments during the Mesoscale Predictability Experiment (MPEX): Rapid and adaptive sampling of upscale convective feedbacks. Bull. Amer. Meteor. Soc., 97, 329336, https://doi.org/10.1175/BAMS-D-14-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, https://doi.org/10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Varble, A., and et al. , 2014: Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. Atmos., 119, 13 89113 918, https://doi.org/10.1002/2013JD021371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Bian, W. O. Brown, H. Cole, V. Grubisić, and K. Young, 2009: Vertical air motion from T-REX radiosonde and dropsonde data. J. Atmos. Oceanic Technol., 26, 928942, https://doi.org/10.1175/2008JTECHA1240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187, https://doi.org/10.1175/1520-0493(1992)120<2169:TIAOOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., H. V. Murphey, C. Flamant, J. Goldstein, and C. R. Pettet, 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, https://doi.org/10.1175/2007MWR2128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and et al. , 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., 96, 21272149, https://doi.org/10.1175/BAMS-D-13-00281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., and C.-S. Chen, 1982: A simulation of the development of successive cells along a cold outflow boundary. J. Atmos. Sci., 39, 14661483, https://doi.org/10.1175/1520-0469(1982)039<1466:ASOTDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113131, https://doi.org/10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Q. Xu, and K. K. Droegemeier, 1997: A theoretical and numerical study of density currents in non-constant shear flows. J. Atmos. Sci., 54, 19982019, https://doi.org/10.1175/1520-0469(1997)054<1998:ATANSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. C. Hegerl, S. I. Seneviratne, R. Stewart, F. W. Zwiers, and L. V. Alexander, 2013. WCRP Grand Challenge: Understanding and predicting weather and climate extremes. White Paper, 10 pp., www.wcrp-climate.org/gc-extremes-documents.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and M. A. Lemone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 24582469, https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A Survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys., 38, 12831305, https://doi.org/10.1007/s10712-017-9447-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 13 13 0
Full Text Views 986 986 77
PDF Downloads 515 515 55

The Colorado State University Convective CLoud Outflows and UpDrafts Experiment (C3LOUD-Ex)

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • | 3 Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado
  • | 4 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 5 Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska
  • | 6 WeatherFlow, Fort Collins, Colorado
  • | 7 Amazon.com, Seattle, Washington
  • | 8 ARC Centre of Excellence for Climate Extremes and School of Earth Sciences, University of Melbourne, Melbourne, Australia
  • | 9 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 10 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 11 Brookhaven National Laboratory, Upton, New York
  • | 12 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 13 NOAA/NESDIS/Center for Satellite Applications and Research, Fort Collins, Colorado
  • | 14 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 15 Green Energy Options Limited, Cambridge, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The intensity of deep convective storms is driven in part by the strength of their updrafts and cold pools. In spite of the importance of these storm features, they can be poorly represented within numerical models. This has been attributed to model parameterizations, grid resolution, and the lack of appropriate observations with which to evaluate such simulations. The overarching goal of the Colorado State University Convective CLoud Outflows and UpDrafts Experiment (C3LOUD-Ex) was to enhance our understanding of deep convective storm processes and their representation within numerical models. To address this goal, a field campaign was conducted during July 2016 and May–June 2017 over northeastern Colorado, southeastern Wyoming, and southwestern Nebraska. Pivotal to the experiment was a novel “Flying Curtain” strategy designed around simultaneously employing a fleet of uncrewed aerial systems (UAS; or drones), high-frequency radiosonde launches, and surface observations to obtain detailed measurements of the spatial and temporal heterogeneities of cold pools. Updraft velocities were observed using targeted radiosondes and radars. Extensive datasets were successfully collected for 16 cold pool–focused and seven updraft-focused case studies. The updraft characteristics for all seven supercell updraft cases are compared and provide a useful database for model evaluation. An overview of the 16 cold pools’ characteristics is presented, and an in-depth analysis of one of the cold pool cases suggests that spatial variations in cold pool properties occur on spatial scales from O(100) m through to O(1) km. Processes responsible for the cold pool observations are explored and support recent high-resolution modeling results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Susan C. van den Heever, sue.vandenheever@colostate.edu

Abstract

The intensity of deep convective storms is driven in part by the strength of their updrafts and cold pools. In spite of the importance of these storm features, they can be poorly represented within numerical models. This has been attributed to model parameterizations, grid resolution, and the lack of appropriate observations with which to evaluate such simulations. The overarching goal of the Colorado State University Convective CLoud Outflows and UpDrafts Experiment (C3LOUD-Ex) was to enhance our understanding of deep convective storm processes and their representation within numerical models. To address this goal, a field campaign was conducted during July 2016 and May–June 2017 over northeastern Colorado, southeastern Wyoming, and southwestern Nebraska. Pivotal to the experiment was a novel “Flying Curtain” strategy designed around simultaneously employing a fleet of uncrewed aerial systems (UAS; or drones), high-frequency radiosonde launches, and surface observations to obtain detailed measurements of the spatial and temporal heterogeneities of cold pools. Updraft velocities were observed using targeted radiosondes and radars. Extensive datasets were successfully collected for 16 cold pool–focused and seven updraft-focused case studies. The updraft characteristics for all seven supercell updraft cases are compared and provide a useful database for model evaluation. An overview of the 16 cold pools’ characteristics is presented, and an in-depth analysis of one of the cold pool cases suggests that spatial variations in cold pool properties occur on spatial scales from O(100) m through to O(1) km. Processes responsible for the cold pool observations are explored and support recent high-resolution modeling results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Susan C. van den Heever, sue.vandenheever@colostate.edu
Save