• Bowden, K. A., P. L. Heinselman, D. M. Kingfield, and R. P. Thomas, 2015: Impacts of phased-array radar data on forecaster performance during severe hail and wind events. Wea. Forecasting, 30, 389404, https://doi.org/10.1175/WAF-D-14-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., and R. J. Keeler, 1993: Antenna pattern analysis and measurements for multiparameter radars. J. Atmos. Oceanic Technol., 10, 674683, https://doi.org/10.1175/1520-0426(1993)010<0674:APAAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2019a: Monetized weather radar network benefits for tornado cost reduction. Project Rep. NOAA-35, MIT Lincoln Laboratory, 88 pp., www.ll.mit.edu/sites/default/files/publication/doc/monetized-weather-radar-network-benefits-cho-noaa-35.pdf.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2019b: Weather radar network benefit model for tornadoes. J. Appl. Meteor. Climatol., 58, 971987, https://doi.org/10.1175/JAMC-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2020: Weather radar network benefit model for flash flood casualty reduction. J. Appl. Meteor. Climatol., 59, 589604, https://doi.org/10.1175/JAMC-D-19-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and et al. , 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part II: Performance verification and case study analysis. J. Hydrometeor., 20, 9991014, https://doi.org/10.1175/JHM-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, M. D., D. Du Russel, A. Morris, and C. Parry, 2018: Multifunction phased array radar advanced technology demonstrator nearfield test results. 2018 IEEE Radar Conf., Oklahoma City, OK, IEEE, 14121415, https://doi.org/10.1109/RADAR.2018.8378771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, R. D., T. L. Allmon, G. Secrest, A. D. Free, D. L. Rose, and J. M. Williams, 2014: A service life extension program for the WSR-88D radars. 30th Conf. on Environmental Information Processing Technologies, Atlanta, GA, Amer. Meteor. Soc., 5.3, https://ams.confex.com/ams/94Annual/webprogram/Paper241171.html.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74, 16691687, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R., 2017: A memorandum on comparisons of weather and aircraft surveillance radar requirements to determine key features for a 10-cm MPAR and SENSR. NOAA/NSSL Rep., 41 pp., https://nssl.noaa.gov/publications/mpar_reports/Comparisons_of_weather_and_aircraft_surveillance_radar_6b_nc.doc.

    • Search Google Scholar
    • Export Citation
  • Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. E., and E. R. Ducot, 2006: Corridor integrated weather system. Linc. Lab. J., 16 (1), 5980., www.ll.mit.edu/r-d/publications/corridor-integrated-weather-system.

    • Search Google Scholar
    • Export Citation
  • FAA, 2019: Fact sheet—Spectrum Efficient National Surveillance Radar (SENSR). Department of Transportation, www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22634.

  • Flamig, Z., H. Vergara, and J. J. Gourley, 2020: The ensemble framework for flash flood forecasting (EF5) v1.2: Description and case study. Geosci. Model Dev., 13, 49434958, https://doi.org/10.5194/gmd-13-4943-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forsyth, D. E., and et al. , 2011: What’s new at the National Weather Radar Testbed (Phased-Array). 27th Conf. on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Amer. Meteor. Soc., Seattle, WA, 12B.2, https://ams.confex.com/ams/91Annual/webprogram/Manuscript/Paper179273/IIPS2011_Final.pdf.

    • Search Google Scholar
    • Export Citation
  • Fulton, C., R. Palmer, M. Yeary, J. Salazar, H. Sigmarsson, M. Weber, and A. Hedden, 2020: Horus: A testbed for fully digital phased array radars. Microwave J., 63, www.microwavejournal.com/articles/33308-horus-a-testbed-for-fully-digital-phased-array-radars.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., and et al. , 2017: The FLASH project: Improving the tools for flash flood monitoring and prediction across the United States. Bull. Amer. Meteor. Soc., 98, 361372, https://doi.org/10.1175/BAMS-D-15-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, and H. Lazrus, 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 10311044, https://doi.org/10.1175/WAF-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. S. LaDue, D. M. Kingfield, and R. Hoffman, 2015: Tornado warning decisions using phased-array radar data. Wea. Forecasting, 30, 5778, https://doi.org/10.1175/WAF-D-14-00042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herd, J. S., and M. D. Conway, 2016: The evolution to modern phased array architectures. Proc. IEEE, 104, 519529, https://doi.org/10.1109/JPROC.2015.2494879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herd, J. S., S. M. Duffy, and H. Steyskal, 2005: Design considerations and results for an overlapped subarray radar antenna. Proc. IEEE Aerospace Conf., Big Sky, MT, IEEE, 6 pp., https://doi.org/10.1109/AERO.2005.1559399.

    • Search Google Scholar
    • Export Citation
  • Hondl, K., and M. Weber, 2019: NOAA’s meteorological phased array radar research program. 2019 IEEE Int. Symp. on Phased Array System and Technology (PAST), Waltham, MA, IEEE, 6 pp., https://doi.org/10.1109/PAST43306.2019.9020994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Wang, C. Kerr, A. Mahre, T. Yu, and D. Bodine, 2020: Impact of assimilating clear-air radial velocity observations from phased array radar on the forecasting of supercell thunderstorm: An observing system simulation experiment study. Mon. Wea. Rev, 148, 38253845, https://doi.org/10.1175/MWR-D-19-0391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, M. J. Dixon, and G. Meymaris, 2010: Modeling, error analysis and evaluation of dual polarization variables obtained from simultaneous horizontal and vertical polarization transmit radar. Part I: Modeling and antenna errors. J. Atmos. Oceanic Technol., 27, 15831598, https://doi.org/10.1175/2010JTECHA1336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., J. W. F. Goddard, and S. M. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469489, https://doi.org/10.1002/qj.49711347604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaminger, M. A., 1988: A preliminary study of precursors to Huntsville microbursts. Project Rep. ATC-153, MIT Lincoln Laboratory, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., 2014: On the use of a radial-based noise power estimation technique to improve estimates of the correlation coefficient on dual-polarization weather radars. J. Atmos. Oceanic Technol., 31, 18671880, https://doi.org/10.1175/JTECH-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., 2017: An approach to simulate the effects of antenna patterns on polarimetric variable estimates. J. Atmos. Oceanic Technol., 34, 19071934, https://doi.org/10.1175/JTECH-D-17-0015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., and R. J. Doviak, 2016: Evaluation of phase coding to mitigate differential reflectivity bias in polarimetric PAR. IEEE Trans. Geosci. Remote Sens., 54, 431451, https://doi.org/10.1109/TGRS.2015.2459047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivić, I. R., C. Curtis, E. Forren, R. Mendoza, D. Schvartzman, S. Torres, D. Wasielewski, and A. Zahrai, 2019: An overview of weather calibration for the Advanced Technology Demonstrator. 2019IEEE Int. Symp. on Phased Array System and Technology (PAST), Waltham, MA, IEEE, 7 pp., https://doi.org/10.1109/PAST43306.2019.9021053.

    • Search Google Scholar
    • Export Citation
  • Kerr, C., and X. Wang, 2020: Ensemble based targeted observation method applied to radar radial velocity observations on idealized supercell low-level rotation forecasts: A proof of concept. Mon. Wea. Rev., 148, 877890, https://doi.org/10.1175/MWR-D-19-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krause, J., 2016: A simple algorithm to discriminate between meteorological and nonmeteorological radar echoes. J. Atmos. Oceanic Technol., 33, 18751885, https://doi.org/10.1175/JTECH-D-15-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Operat. Meteor., 1, 243264, https://doi.org/10.15191/nwajom.2013.0120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, https://doi.org/10.1175/JAMC-D-13-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., E. F. Joback, P. Kirstetter, and J. Y. N. Cho, 2020: Geospatial QPE accuracy dependence on weather radar network configurations. J. Appl. Meteor. Climatol., 59, 17731792, https://doi.org/10.1175/JAMC-D-19-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use during the warning decision process. Wea. Forecasting, 34, 11731188, https://doi.org/10.1175/WAF-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., 2004: Simultaneous transmission mode for the polarimetric WSR-88D: Statistical biases and standard deviations of polarimetric variables. NOAA/NSSL and OU/CIMMS Rep., 84 pp., www.nssl.noaa.gov/publications/wsr88d_reports/SHV_statistics.pdf.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., R. J. Doviak, and D. S. Zrnić, 2015: A method to increase the scanning rate of phased-array weather radar. IEEE Trans. Geosci. Remote Sens., 53, 56345643, https://doi.org/10.1109/TGRS.2015.2426704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moosakhanian, A., 2016: FAA NextGen weather systems. 5th Aviation, Range, and Aerospace Meteorology Special Symp., New Orleans, LA, Amer. Meteor. Soc., 4.1, https://ams.confex.com/ams/96Annual/webprogram/Paper291356.html.

    • Search Google Scholar
    • Export Citation
  • Nai, F., J. Boettcher, D. Schvartzman, C. Curtis, and S. Torres, 2020a: SENSR Data Quality Simulations Final Report. NOAA/NSSL and OU/CIMMS Rep., 168 pp., www.nssl.noaa.gov/publications/mpar_reports/SENSR%20Data%20Quality%20Simulation%20Final%20Report.pdf.

    • Search Google Scholar
    • Export Citation
  • Nai, F., J. Boettcher, D. Schvartzman, C. Curtis, and S. Torres, 2020b: The impact of elevation sidelobe contamination on radar data quality for operational interpretation. J. Appl. Meteor. Climatol., 59, 707724, https://doi.org/10.1175/JAMC-D-19-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm inflow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: NOAA Observing System Integrated Analysis (NOSIA-II) Methodology Report, Release 1.95. NOAA Tech. Rep. NESDIS 147, 86 pp., https://doi.org/10.7289/V52V2D1H.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2020: Weather radar follow on plan: Research and risk reduction to inform acquisition decisions. Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, 21 pp., www.nssl.noaa.gov/publications/mpar_reports/RadarFollowOnPlan_ReporttoCongress_2020June_Final.pdf.

  • NSSL, 2020: Spectrum Efficient National Surveillance Radar (SENSR): OAR feasibility study final report. National Oceanic and Atmospheric Administration, 142 pp., www.nssl.noaa.gov/publications/mpar_reports/SENSR%20Final%20Report%20v2.1.pdf.

    • Search Google Scholar
    • Export Citation
  • NWS, 2015: NOAA/National Weather Service Radar Functional Requirements. National Oceanic and Atmospheric Administration, 57 pp., www.roc.noaa.gov/WSR88D/PublicDocs/NOAA_Radar_Functional_Requirements_Final_Sept%202015.pdf.

    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 31373160, https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor., 28, 285303, https://doi.org/10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Oceanic Technol., 24, 12561267, https://doi.org/10.1175/JTECH2034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 486.

  • Ryzhkov, A. V., V. B. Zhuravlyov, and N. A. Rybakova, 1994: Preliminary results of X-band polarization radar studies of clouds and precipitation. J. Atmos. Oceanic Technol., 11, 132139, https://doi.org/10.1175/1520-0426(1994)011<0132:PROXBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, https://doi.org/10.1175/JTECH-D-13-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schvartzman, D., and C. D. Curtis, 2019: Signal Processing and Radar Characteristic (SPARC) simulator: A flexible dual-polarization weather-radar signal simulation framework based on preexisting radar-variable data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 135150, https://doi.org/10.1109/JSTARS.2018.2885614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schvartzman, D., S. M. Torres, and T.-Y. Yu, 2021: Distributed beams: Concept of operations for polarimetric rotating phased array radar. IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2020.3047090, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. C. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, https://doi.org/10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521774, https://doi.org/10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stailey, J. E., and K. D. Hondl, 2016: Multifunction phased array radar for aircraft and weather surveillance. Proc. IEEE, 104, 649659, https://doi.org/10.1109/JPROC.2015.2491179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratman, D. R., N. Yussouf, Y. Jung, T. A. Supinie, M. Xue, P. S. Skinner, and B. J. Putnam, 2020: Optimal temporal frequency of NSSL phased-array radar observations for an experimental warn-on-forecast system. Wea. Forecasting, 35, 193214, https://doi.org/10.1175/WAF-D-19-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Supinie, T. A., N. Yussouf, Y. Jung, M. Xue, J. Cheng, and S. Wang, 2017: Comparison of the analyses and forecasts of a tornadic supercell storm from assimilating phased-array radar and WSR-88D observations. Wea. Forecasting, 32, 13791401, https://doi.org/10.1175/WAF-D-16-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and D. Schvartzman, 2020: A simulation framework to support the design and evaluation of adaptive scanning for weather radars. J. Atmos. Oceanic Technol., 37, 23212339, https://doi.org/10.1175/JTECH-D-20-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and et al. , 2016: Adaptive-weather-surveillance and multifunction capabilities of the National Weather Radar Testbed phased array radar. Proc. IEEE, 104, 660672, https://doi.org/10.1109/JPROC.2015.2484288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601620, https://doi.org/10.1175/1520-0469(1989)046<0601:MRSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., M. Xue, and J. Min, 2013: A four-dimensional asynchronous ensemble square-root filter (4DEnSRF) algorithm and tests with simulated radar data. Quart. J. Roy. Meteor. Soc., 139, 805819, https://doi.org/10.1002/qj.1987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and V. Chandrasekar, 2006: Polarization isolation requirements for linear dual-polarization weather radar in simultaneous transmission mode of operation. IEEE Trans. Geosci. Remote Sens., 44, 20192028, https://doi.org/10.1109/TGRS.2006.872138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., 2019: Meteorological phased array radar research at NOAA’s National Severe Storms Laboratory. 2019 IEEE Int. Conf. on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, IEEE, 6 pp., https://doi.org/10.1109/COMCAS44984.2019.8958067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391752, https://doi.org/10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, and H. G. Thomas, 2017: Command and control for multifunction phased array radar. IEEE Trans. Geosci. Remote Sens., 55, 58995912, https://doi.org/10.1109/TGRS.2017.2716935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., V. Melnikov, D. Zrnić, K. Hondl, R. Zellner, and B. Hudson, 2020: Experimental validation of the multibeam technique for rapid-scan, meteorological phased-array radar. 36th Conf. on Environmental Information Processing Technologies, Boston, MA, Amer. Meteor. Soc., 8B, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/368700.

    • Search Google Scholar
    • Export Citation
  • Wen, Y., T. J. Schuur, H. Vergara, and C. Kuster, 2021: Effect of precipitation sampling error on flash flood monitoring and prediction: Anticipating operational rapid-update weather radars. J. Hydrometeor., https://doi.org/10.1175/JHM-D-19-0286.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Custer, D. M. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeary, M., R. Palmer, C. Fulton, J. Salazar, and H. Sigmarsson, 2019: Recent advances on an S-band all-digital mobile phased array radar. 2019 IEEE Int. Symp. on Phased Array System and Technology (PAST), Waltham, MA, IEEE, 5 pp., https://doi.org/10.1109/PAST43306.2019.9020988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T. Y., M. B. Orescanin, C. D. Curtis, D. S. Zrnić, and D. E. Forsyth, 2007: Beam multiplexing using the phased-array weather radar. J. Atmos. Oceanic Technol., 24, 616626, https://doi.org/10.1175/JTECH2052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517538, https://doi.org/10.1175/2009MWR2925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., R. J. Doviak, D. S. Zrnić, R. Palmer, L. Lei, and Y. Al-Rashid, 2011: Polarimetric phased-array radar for weather measurement: A planar or cylindrical configuration? J. Atmos. Oceanic Technol., 28, 6373, https://doi.org/10.1175/2010JTECHA1470.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., D. S. Zrnić, L. Borowska, and Y. Al-Rashid, 2015: Hybrid scan and joint signal processing for a high efficient MPAR. 31st Conf. Environmental Information Processing Technologies, Phoenix, AZ, Amer. Meteor. Soc., 7A.6, https://ams.confex.com/ams/95Annual/webprogram/Manuscript/Paper258631/AMS_ext_abs_2015.pdf.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., and et al. , 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D., R. Doviak, G. Zhang, and A. Ryzhkov, 2010: Bias in differential reflectivity due to cross coupling through the radiation patterns of polarimetric weather radars. J. Atmos. Oceanic Technol., 27, 16241637, https://doi.org/10.1175/2010JTECHA1350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D., R. Doviak, V. M. Melnikov, and I. R. Ivić, 2014: Signal design to suppress coupling in the polarimetric phased array radar. J. Atmos. Oceanic Technol., 31, 10631077, https://doi.org/10.1175/JTECH-D-13-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D., V. M. Melnikov, R. J. Doviak, and R. Palmer, 2015: Scanning strategy for the multifunction phased-array radar to satisfy aviation and meteorological needs. IEEE Geosci. Remote Sens. Lett., 12, 12041208, https://doi.org/10.1109/LGRS.2014.2388202.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 0
Full Text Views 1140 1140 163
PDF Downloads 815 815 182

Towards the Next Generation Operational Meteorological Radar

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 5 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 6 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 7 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 8 National Center for Atmospheric Research, Boulder, Colorado
  • | 9 MIT Lincoln Laboratory, Lexington, Massachusetts
  • | 10 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 11 MIT Lincoln Laboratory, Lexington, Massachusetts
  • | 12 NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 13 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/Office of Oceanic and Atmospheric Research/National Severe Storms Laboratory, Norman, Oklahoma
  • | 14 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 15 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 16 Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 17 NOAA/National Weather Service, Silver Spring, Maryland
  • | 18 NOAA/Office of Oceanic and Atmospheric Research, Silver Spring, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA’s future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe-weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.

Current affiliation: MIT Lincoln Laboratory, Lexington, Massachusetts

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was modified on 12 August 2021 to correct the affiliation for coauthor Derek Stratman.

Corresponding author: Mark Weber, mark.weber@ll.mit.edu

Abstract

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA’s future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe-weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.

Current affiliation: MIT Lincoln Laboratory, Lexington, Massachusetts

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was modified on 12 August 2021 to correct the affiliation for coauthor Derek Stratman.

Corresponding author: Mark Weber, mark.weber@ll.mit.edu
Save